1
|
Shehzad S, Kim H. Single-molecule DNA-flow stretching assay as a versatile hybrid tool for investigating DNA-protein interactions. BMB Rep 2025; 58:41-51. [PMID: 39701027 PMCID: PMC11788529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024] Open
Abstract
Single-molecule techniques allow researchers to investigate individual molecules and obtain unprecedented details of the heterogeneous nature of biological entities. They play instrumental roles in studying DNA-protein interactions due to the ability to visualize DNA or proteins and to manipulate individual DNA molecules by applying force or torque. Here, we describe single-molecule DNA-flow stretching assays as hybrid tools that combine forces with fluorescence. We also review how widely these assays are utilized in elucidating working mechanisms of DNA-binding proteins. Additionally, we provide a brief explanation of various efforts to prepare DNA substrates with desired internal protein-binding sequences. More complicated needs for DNA-protein interaction research have led to improvements in single-molecule DNA flow-stretching techniques. Several DNA flow-stretching variants such as DNA curtain, DNA motion capture assays, and protein-induced fluorescence enhancement (PIFE) are introduced in this mini review. Singlemolecule DNA flow-stretching assays will keep contributing to our understanding of how DNA-binding proteins function due to their multiplexed, versatile, and robust capabilities. [BMB Reports 2025; 58(1): 41-51].
Collapse
Affiliation(s)
- Sadaf Shehzad
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| |
Collapse
|
2
|
Chin Sang C, Moore G, Tereshchenko M, Zhang H, Nosella ML, Dasovich M, Alderson TR, Leung AKL, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. EMBO Rep 2024; 25:5635-5666. [PMID: 39496836 PMCID: PMC11624282 DOI: 10.1038/s44319-024-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it remains unclear how exactly PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human single-strand repair proteins in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain length-dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments, which correlates with PARP1 clusters compacting long DNA and bridging DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities of DNA repair factors, which may inform on how PARPs function in DNA repair foci and other PAR-driven condensates in cells.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael L Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Green Centre for Reproductive Biology Sciences, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - T Reid Alderson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Sang CC, Moore G, Tereshchenko M, Nosella ML, Zhang H, Alderson TR, Dasovich M, Leung A, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.575817. [PMID: 38328070 PMCID: PMC10849519 DOI: 10.1101/2024.01.20.575817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - T. Reid Alderson
- Division of Molecular Biology and Biochemistry, Medizinische Universität Graz, Graz, 8010, Austria
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
4
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
5
|
Ding J, Li X, Shen J, Zhao Y, Zhong S, Lai L, Niu H, Qi Z. ssDNA accessibility of Rad51 is regulated by orchestrating multiple RPA dynamics. Nat Commun 2023; 14:3864. [PMID: 37391417 PMCID: PMC10313831 DOI: 10.1038/s41467-023-39579-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
The eukaryotic single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA) plays a crucial role in various DNA metabolic pathways, including DNA replication and repair, by dynamically associating with ssDNA. While the binding of a single RPA molecule to ssDNA has been thoroughly studied, the accessibility of ssDNA is largely governed by the bimolecular behavior of RPA, the biophysical nature of which remains unclear. In this study, we develop a three-step low-complexity ssDNA Curtains method, which, when combined with biochemical assays and a Markov chain model in non-equilibrium physics, allow us to decipher the dynamics of multiple RPA binding to long ssDNA. Interestingly, our results suggest that Rad52, the mediator protein, can modulate the ssDNA accessibility of Rad51, which is nucleated on RPA coated ssDNA through dynamic ssDNA exposure between neighboring RPA molecules. We find that this process is controlled by the shifting between the protection mode and action mode of RPA ssDNA binding, where tighter RPA spacing and lower ssDNA accessibility are favored under RPA protection mode, which can be facilitated by the Rfa2 WH domain and inhibited by Rad52 RPA interaction.
Collapse
Affiliation(s)
- Jiawei Ding
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiangting Li
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Yiling Zhao
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuchen Zhong
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
6
|
Schaub JM, Soniat MM, Finkelstein IJ. Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends. Nucleic Acids Res 2022; 50:3911-3921. [PMID: 35357490 PMCID: PMC9023281 DOI: 10.1093/nar/gkac119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 01/20/2023] Open
Abstract
Homologous recombination-deficient cancers rely on DNA polymerase Theta (Polθ)-Mediated End Joining (TMEJ), an alternative double-strand break repair pathway. Polθ is the only vertebrate polymerase that encodes an N-terminal superfamily 2 (SF2) helicase domain, but the role of this helicase domain in TMEJ remains unclear. Using single-molecule imaging, we demonstrate that Polθ-helicase (Polθ-h) is a highly processive single-stranded DNA (ssDNA) motor protein that can efficiently strip Replication Protein A (RPA) from ssDNA. Polθ-h also has a limited capacity for disassembling RAD51 filaments but is not processive on double-stranded DNA. Polθ-h can bridge two non-complementary DNA strands in trans. PARylation of Polθ-h by PARP-1 resolves these DNA bridges. We conclude that Polθ-h removes RPA and RAD51 filaments and mediates bridging of DNA overhangs to aid in polymerization by the Polθ polymerase domain.
Collapse
Affiliation(s)
- Jeffrey M Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael M Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. J Mol Biol 2022; 434:167562. [PMID: 35351518 PMCID: PMC9400470 DOI: 10.1016/j.jmb.2022.167562] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
E. coli single-stranded-DNA binding protein (EcSSB) displays nearest-neighbor (NN) and non-nearest-neighbor (NNN)) cooperativity in binding ssDNA during genome maintenance. NNN cooperativity requires the intrinsically-disordered linkers (IDL) of the C-terminal tails. Potassium glutamate (KGlu), the primary E. coli salt, promotes NNN-cooperativity, while KCl inhibits it. We find that KGlu promotes compaction of a single polymeric SSB-coated ssDNA beyond what occurs in KCl, indicating a link of compaction to NNN-cooperativity. EcSSB also undergoes liquid-liquid phase separation (LLPS), inhibited by ssDNA binding. We find that LLPS, like NNN-cooperativity, is promoted by increasing [KGlu] in the physiological range, while increasing [KCl] and/or deletion of the IDL eliminate LLPS, indicating similar interactions in both processes. From quantitative determinations of interactions of KGlu and KCl with protein model compounds, we deduce that the opposing effects of KGlu and KCl on SSB LLPS and cooperativity arise from their opposite interactions with amide groups. KGlu interacts unfavorably with the backbone (especially Gly) and side chain amide groups of the IDL, promoting amide-amide interactions in LLPS and NNN-cooperativity. By contrast, KCl interacts favorably with these amide groups and therefore inhibits LLPS and NNN-cooperativity. These results highlight the importance of salt interactions in regulating the propensity of proteins to undergo LLPS.
Collapse
|
8
|
Jack A, Kim Y, Strom AR, Lee DSW, Williams B, Schaub JM, Kellogg EH, Finkelstein IJ, Ferro LS, Yildiz A, Brangwynne CP. Compartmentalization of telomeres through DNA-scaffolded phase separation. Dev Cell 2022; 57:277-290.e9. [PMID: 35077681 PMCID: PMC8988007 DOI: 10.1016/j.devcel.2021.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel S W Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Byron Williams
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Ilya J Finkelstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physics Department, University of California, Berkeley, CA 94720, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
9
|
Piett CG, Pecen TJ, Laverty DJ, Nagel ZD. Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters. Nat Protoc 2021; 16:4265-4298. [PMID: 34363069 PMCID: PMC9272811 DOI: 10.1038/s41596-021-00577-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Repair of DNA damage is a critical survival mechanism that affects susceptibility to various human diseases and represents a key target for cancer therapy. A major barrier to applying this knowledge in research and clinical translation has been the lack of efficient, quantitative functional assays for measuring DNA repair capacity in living primary cells. To overcome this barrier, we recently developed a technology termed 'fluorescence multiplex host cell reactivation' (FM-HCR). We describe a method for using standard molecular biology techniques to generate large quantities of FM-HCR reporter plasmids containing site-specific DNA lesions and using these reporters to assess DNA repair capacity in at least six major DNA repair pathways in live cells. We improve upon previous methodologies by (i) providing a universal workflow for generating reporter plasmids, (ii) improving yield and purity to enable large-scale studies that demand milligram quantities and (iii) reducing preparation time >ten-fold.
Collapse
Affiliation(s)
- C G Piett
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - T J Pecen
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - D J Laverty
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Z D Nagel
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Zhang H, Schaub JM, Finkelstein IJ. RADX condenses single-stranded DNA to antagonize RAD51 loading. Nucleic Acids Res 2020; 48:7834-7843. [PMID: 32621611 PMCID: PMC7430644 DOI: 10.1093/nar/gkaa559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
RADX is a mammalian single-stranded DNA-binding protein that stabilizes telomeres and stalled replication forks. Cellular biology studies have shown that the balance between RADX and Replication Protein A (RPA) is critical for DNA replication integrity. RADX is also a negative regulator of RAD51-mediated homologous recombination at stalled forks. However, the mechanism of RADX acting on DNA and its interactions with RPA and RAD51 are enigmatic. Using single-molecule imaging of the key proteins in vitro, we reveal that RADX condenses ssDNA filaments, even when the ssDNA is coated with RPA at physiological protein ratios. RADX compacts RPA-coated ssDNA filaments via higher-order assemblies that can capture ssDNA in trans. Furthermore, RADX blocks RPA displacement by RAD51 and prevents RAD51 loading on ssDNA. Our results indicate that RADX is an ssDNA condensation protein that inhibits RAD51 filament formation and may antagonize other ssDNA-binding proteins on RPA-coated ssDNA.
Collapse
Affiliation(s)
- Hongshan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. Human cohesin compacts DNA by loop extrusion. Science 2019; 366:1345-1349. [PMID: 31780627 PMCID: PMC7387118 DOI: 10.1126/science.aaz4475] [Citation(s) in RCA: 453] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/23/2022]
Abstract
Cohesin is a chromosome-bound, multisubunit adenosine triphosphatase complex. After loading onto chromosomes, it generates loops to regulate chromosome functions. It has been suggested that cohesin organizes the genome through loop extrusion, but direct evidence is lacking. Here, we used single-molecule imaging to show that the recombinant human cohesin-NIPBL complex compacts both naked and nucleosome-bound DNA by extruding DNA loops. DNA compaction by cohesin requires adenosine triphosphate (ATP) hydrolysis and is force sensitive. This compaction is processive over tens of kilobases at an average rate of 0.5 kilobases per second. Compaction of double-tethered DNA suggests that a cohesin dimer extrudes DNA loops bidirectionally. Our results establish cohesin-NIPBL as an ATP-driven molecular machine capable of loop extrusion.
Collapse
Affiliation(s)
- Yoori Kim
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhubing Shi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongshan Zhang
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Regulation of Nearest-Neighbor Cooperative Binding of E. coli SSB Protein to DNA. Biophys J 2019; 117:2120-2140. [PMID: 31708161 DOI: 10.1016/j.bpj.2019.09.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli single-strand (ss) DNA-binding protein (SSB) is an essential protein that binds ssDNA intermediates formed during genome maintenance. SSB homotetramers bind ssDNA in several modes differing in occluded site size and cooperativity. The 35-site-size ((SSB)35) mode favored at low [NaCl] and high SSB/DNA ratios displays high "unlimited" nearest-neighbor cooperativity (ω35), forming long protein clusters, whereas the 65-site-size ((SSB)65) mode in which ssDNA wraps completely around the tetramer is favored at higher [NaCl] (>200 mM) and displays "limited" cooperativity (ω65), forming only dimers of tetramers. In addition, a non-nearest-neighbor high cooperativity can also occur in the (SSB)65 mode on long ssDNA even at physiological salt concentrations in the presence of glutamate and requires its intrinsically disordered C-terminal linker (IDL) region. However, whether cooperativity exists between the different modes and the role of the IDL in nearest-neighbor cooperativity has not been probed. Here, we combine sedimentation velocity and fluorescence titration studies to examine nearest-neighbor cooperativity in each binding mode and between binding modes using (dT)70 and (dT)140. We find that the (SSB)35 mode always shows extremely high "unlimited" cooperativity that requires the IDL. At high salt, wild-type SSB and a variant without the IDL, SSB-ΔL, bind in the (SSB)65 mode but show little cooperativity, although cooperativity increases at lower [NaCl] for wild-type SSB. We also find significant intermode nearest-neighbor cooperativity (ω65/35), with ω65 ≪ ω65/35 <ω35. The intrinsically disordered region of SSB is required for all cooperative interactions; however, in contrast to the non-nearest-neighbor cooperativity observed on longer ssDNA, glutamate does not enhance these nearest-neighbor cooperativities. Therefore, we show that SSB possesses four types of cooperative interactions, with clear differences in the forces stabilizing nearest-neighbor versus non-nearest-neighbor cooperativity.
Collapse
|
13
|
Abstract
Fluorescent labeling of proteins is a critical requirement for single-molecule imaging studies. Many protein labeling strategies require harsh conditions or large epitopes that can inactivate the target protein, either by decreasing the protein's enzymatic activity or by blocking protein-protein interactions. Here, we provide a detailed protocol to efficiently label CRISPR-Cas complexes with a small fluorescent peptide via sortase-mediated transpeptidation. The sortase tag consists of just a few amino acids that are specifically recognized at either the N- or the C-terminus, making this strategy advantageous when the protein is part of a larger complex. Sortase is active at high ionic strength, 4°C, and with a broad range of organic fluorophores. We discuss the design, optimization, and single-molecule fluorescent imaging of CRISPR-Cas complexes on DNA curtains. Sortase-mediated transpeptidation is a versatile addition to the protein labeling toolkit.
Collapse
|