1
|
Sikeler C, Kempter S, Sekulic I, Burger S, Liedl T. Chiral Plasmonic Crystals Self-Assembled by DNA Origami. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:5116-5121. [PMID: 40103661 PMCID: PMC11913018 DOI: 10.1021/acs.jpcc.4c08768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
Periodic lattices of high refractive index materials manipulate light in exceptional manners. Resulting remarkable properties range from photonic band gaps to chiral active matter, which critically depend on parameters of crystal lattices such as the unit cell, lattice type, and periodicity. In self-assembled materials, the lattice properties are inherited by the geometry and size of the macromolecules or colloidal particles assembling the unit cell. DNA origami allows for excellent control over the size and shape of assembled macromolecules while simultaneously allowing control over the interaction between them and ultimately the crystal's structure. Here, we present the assembly of chiral, rhombohedral crystals in one, two, and three dimensions built by a DNA origami tensegrity triangle. Subsequent modification of the lattice with gold nanorods converts the lattices into chiral plasmonic metamaterials active in the visible and near-infrared spectral range. We demonstrate their chiral activity and corroborate the experimental results with simulated data.
Collapse
Affiliation(s)
| | - Susanne Kempter
- Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Ivan Sekulic
- Zuse Institute Berlin, 14195 Berlin, Germany
- JCMwave, 14050 Berlin, Germany
| | - Sven Burger
- Zuse Institute Berlin, 14195 Berlin, Germany
- JCMwave, 14050 Berlin, Germany
| | - Tim Liedl
- Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
2
|
Kabusure KM, Piskunen P, Saarinen JJ, Linko V, Hakala TK. Controlling Raman enhancement in particle-aperture hybrid nanostructures by interlayer spacing. NANOSCALE 2025; 17:3035-3041. [PMID: 39688459 DOI: 10.1039/d4nr03648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Here we show how surface-enhanced Raman spectroscopy (SERS) features can be fine-tuned in optically active substrates made of layered materials. To demonstrate this, we used DNA-assisted lithography (DALI) to create substrates with silver bowtie nanoparticle-aperture pairs and then coated the samples with rhodamine 6G (R6G) molecules. By varying the spacing between the aperture and particle layer, we were able to control the strength of the interlayer coupling between the plasmon resonances of the apertures and those of the underlying bowtie particles. The changes in the resulting field enhancements were confirmed by recording the Raman spectra of R6G from the substrates, and the experimental findings were supported with finite difference time domain (FDTD) simulations including reflection/extinction and near-field profiles.
Collapse
Affiliation(s)
- Kabusure M Kabusure
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| | - Jarkko J Saarinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.
| | - Tommi K Hakala
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| |
Collapse
|
3
|
Liu Z, Wang Z, Guckel J, Akbarian Z, Seifert TJ, Park D, Schlickum U, Stosch R, Etzkorn M. Controlling Nanoparticle Distance by On-Surface DNA-Origami Folding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310955. [PMID: 38634220 DOI: 10.1002/smll.202310955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Indexed: 04/19/2024]
Abstract
DNA origami is a flexible platform for the precise organization of nano-objects, enabling numerous applications from biomedicine to nano-photonics. Its huge potential stems from its high flexibility that allows customized structures to meet specific requirements. The ability to generate diverse final structures from a common base by folding significantly enhances design variety and is regularly occurring in liquid. This study describes a novel approach that combines top-down lithography with bottom-up DNA origami techniques to control folding of the DNA origami with the adsorption on pre-patterned surfaces. Using this approach, tunable plasmonic dimer nano-arrays are fabricated on a silicon surface. This involves employing electron beam lithography to create adsorption sites on the surface and utilizing self-organized adsorption of DNA origami functionalized with two gold nanoparticles (AuNPs). The desired folding of the DNA origami helices can be controlled by the size and shape of the adsorption sites. This approach can for example be used to tune the center-to-center distance of the AuNPs dimers on the origami template. To demonstrate this technique's efficiency, the Raman signal of dye molecules (carboxy tetramethylrhodamine, TAMRA) coated on the AuNPs surface are investigated. These findings highlight the potential of tunable DNA origami-based plasmonic nanostructures for many applications.
Collapse
Affiliation(s)
- Zhe Liu
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Zunhao Wang
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Jannik Guckel
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Ziba Akbarian
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Tim J Seifert
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Daesung Park
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Uta Schlickum
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Rainer Stosch
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Markus Etzkorn
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Siegel N, Hasebe H, Chiarelli G, Garoli D, Sugimoto H, Fujii M, Acuna GP, Kołątaj K. Universal Click-Chemistry Approach for the DNA Functionalization of Nanoparticles. J Am Chem Soc 2024; 146:17250-17260. [PMID: 38871677 DOI: 10.1021/jacs.4c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nanotechnology has revolutionized the fabrication of hybrid species with tailored functionalities. A milestone in this field is the deoxyribonucleic acid (DNA) conjugation of nanoparticles, introduced almost 30 years ago, which typically exploits the affinity between thiol groups and metallic surfaces. Over the last decades, developments in colloidal research have enabled the synthesis of an assortment of nonmetallic structures, such as high-index dielectric nanoparticles, with unique properties not previously accessible with traditional metallic nanoparticles. However, to stabilize, integrate, and provide further functionality to nonmetallic nanoparticles, reliable techniques for their functionalization with DNA will be crucial. Here, we combine well-established dibenzylcyclooctyne-azide click-chemistry with a simple freeze-thaw method to achieve the functionalization of silica and silicon nanoparticles, which form exceptionally stable colloids with a high DNA surface density of ∼0.2 molecules/nm2. Furthermore, we demonstrate that these functionalized colloids can be self-assembled into high-index dielectric dimers with a yield of over 50% via the use of DNA origami. Finally, we extend this method to functionalize other important nanomaterials, including oxides, polymers, core-shell, and metal nanostructures. Our results indicate that the method presented herein serves as a crucial complement to conventional thiol functionalization chemistry and thus greatly expands the toolbox of DNA-functionalized nanoparticles currently available.
Collapse
Affiliation(s)
- Nicole Siegel
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Hiroaki Hasebe
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Denis Garoli
- Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, Via Amendola 2 Padiglione Tamburini, 42122 Reggio Emilia, Italy
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Karol Kołątaj
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Kabusure KM, Piskunen P, Yang J, Linko V, Hakala TK. Raman enhancement in bowtie-shaped aperture-particle hybrid nanostructures fabricated with DNA-assisted lithography. NANOSCALE 2023; 15:8589-8596. [PMID: 37097163 DOI: 10.1039/d3nr00616f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report on efficient surface-enhanced Raman spectroscopy (SERS) supporting substrates, which are based on deoxyribonucleic acid (DNA)-assisted lithography (DALI) and a layered configuration of materials. In detail, we used nanoscopic DNA origami bowtie templates to form hybrid nanostructures consisting of aligned silver bowtie-shaped particles and apertures of similar shape in a silver film. We hypothesized that this particular geometry could facilitate a four-fold advantage in Raman enhancement compared to common particle-based SERS substrates, and further, we verified these hypotheses experimentally and by finite difference time domain simulations. In summary, our DALI-fabricated hybrid structures suppress the background emission, allow emission predominantly from the areas of high field enhancement, and support additional resonances associated with the nanoscopic apertures. Finally, these nanoapertures also enhance the fields associated with the resonances of the underlying bowtie particles. The versatility and parallel nature of our DNA origami-based nanofabrication scheme and all of the above-mentioned features of the hybrid structures therefore make our optically resonant substrates attractive for various SERS-based applications.
Collapse
Affiliation(s)
- Kabusure M Kabusure
- Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| | - Jiaqi Yang
- Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
- LIBER Center of Excellence, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.
| | - Tommi K Hakala
- Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, P.O. Box 111, FI-80101, Joensuu, Finland.
| |
Collapse
|
6
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Williamson P, Piskunen P, Ijäs H, Butterworth A, Linko V, Corrigan DK. Signal Amplification in Electrochemical DNA Biosensors Using Target-Capturing DNA Origami Tiles. ACS Sens 2023; 8:1471-1480. [PMID: 36914224 PMCID: PMC10152479 DOI: 10.1021/acssensors.2c02469] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Electrochemical DNA (e-DNA) biosensors are feasible tools for disease monitoring, with their ability to translate hybridization events between a desired nucleic acid target and a functionalized transducer, into recordable electrical signals. Such an approach provides a powerful method of sample analysis, with a strong potential to generate a rapid time to result in response to low analyte concentrations. Here, we report a strategy for the amplification of electrochemical signals associated with DNA hybridization, by harnessing the programmability of the DNA origami method to construct a sandwich assay to boost charge transfer resistance (RCT) associated with target detection. This allowed for an improvement in the sensor limit of detection by two orders of magnitude compared to a conventional label-free e-DNA biosensor design and linearity for target concentrations between 10 pM and 1 nM without the requirement for probe labeling or enzymatic support. Additionally, this sensor design proved capable of achieving a high degree of strand selectivity in a challenging DNA-rich environment. This approach serves as a practical method for addressing strict sensitivity requirements necessary for a low-cost point-of-care device.
Collapse
Affiliation(s)
- Paul Williamson
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, United Kingdom
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.,Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Adrian Butterworth
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, United Kingdom
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.,LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland.,Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Damion K Corrigan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, United Kingdom.,Department of Pure & Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
8
|
Dunn KE, Elfick A. Harnessing DNA Nanotechnology and Chemistry for Applications in Photonics and Electronics. Bioconjug Chem 2023; 34:97-104. [PMID: 36121896 PMCID: PMC9853499 DOI: 10.1021/acs.bioconjchem.2c00286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Many photonic and electronic devices rely on nanotechnology and nanofabrication, but DNA-based approaches have yet to make a significant commercial impact in these fields even though DNA molecules are now well-established as versatile building blocks for nanostructures. As we describe here, DNA molecules can be chemically modified with a wide variety of functional groups enabling nanocargoes to be attached at precisely determined locations. DNA nanostructures can also be used as templates for the growth of inorganic structures. Together, these factors enable the use of DNA nanotechnology for the construction of many novel devices and systems. In this topical review, we discuss four case studies of potential applications in photonics and electronics: carbon nanotube transistors, devices for quantum computing, artificial electromagnetic materials, and enzymatic fuel cells. We conclude by speculating about the barriers to the exploitation of these technologies in real-world settings.
Collapse
Affiliation(s)
- Katherine E. Dunn
- School of
Engineering, Institute for
Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3DW, Scotland, U.K.
| | - Alistair Elfick
- School of
Engineering, Institute for
Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3DW, Scotland, U.K.
| |
Collapse
|
9
|
Ijäs H, Kostiainen MA, Linko V. Protein Coating of DNA Origami. Methods Mol Biol 2023; 2639:195-207. [PMID: 37166719 DOI: 10.1007/978-1-0716-3028-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA origami has emerged as a common technique to create custom two- (2D) and three-dimensional (3D) structures at the nanoscale. These DNA nanostructures have already proven useful in development of many biotechnological tools; however, there are still challenges that cast a shadow over the otherwise bright future of biomedical uses of these DNA objects. The rather obvious obstacles in harnessing DNA origami as drug-delivery vehicles and/or smart biodevices are related to their debatable stability in biologically relevant media, especially in physiological low-cation and endonuclease-rich conditions, relatively poor transfection rates, and, although biocompatible by nature, their unpredictable compatibility with the immune system. Here we demonstrate a technique for coating DNA origami with albumin proteins for enhancing their pharmacokinetic properties. To facilitate protective coating, a synthesized positively charged dendron was linked to bovine serum albumin (BSA) through a covalent maleimide-cysteine bonding, and then the purified dendron-protein conjugates were let to assemble on the negatively charged surface of DNA origami via electrostatic interaction. The resulted BSA-dendron conjugate-coated DNA origami showed improved transfection, high resistance against endonuclease digestion, and significantly enhanced immunocompatibility compared to bare DNA origami. Furthermore, our proposed coating strategy can be considered highly versatile as a maleimide-modified dendron serving as a synthetic DNA-binding domain can be linked to any protein with an available cysteine site.
Collapse
Affiliation(s)
- Heini Ijäs
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Ludwig-Maximilians-University, Munich, Germany
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
10
|
Ijäs H, Liedl T, Linko V, Posnjak G. A label-free light-scattering method to resolve assembly and disassembly of DNA nanostructures. Biophys J 2022; 121:4800-4809. [PMID: 36811525 PMCID: PMC9811603 DOI: 10.1016/j.bpj.2022.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
Abstract
DNA self-assembly, and in particular DNA origami, has evolved into a reliable workhorse for organizing organic and inorganic materials with nanometer precision and with exactly controlled stoichiometry. To ensure the intended performance of a given DNA structure, it is beneficial to determine its folding temperature, which in turn yields the best possible assembly of all DNA strands. Here, we show that temperature-controlled sample holders and standard fluorescence spectrometers or dynamic light-scattering setups in a static light-scattering configuration allow for monitoring the assembly progress in real time. With this robust label-free technique, we determine the folding and melting temperatures of a set of different DNA origami structures without the need for more tedious protocols. In addition, we use the method to follow digestion of DNA structures in the presence of DNase I and find strikingly different resistances toward enzymatic degradation depending on the structural design of the DNA object.
Collapse
Affiliation(s)
- Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland; Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland; LIBER Center of Excellence, Aalto University, Aalto, Finland.
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
11
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
12
|
Kabusure KM, Piskunen P, Yang J, Kataja M, Chacha M, Ojasalo S, Shen B, Hakala TK, Linko V. Optical characterization of DNA origami-shaped silver nanoparticles created through biotemplated lithography. NANOSCALE 2022; 14:9648-9654. [PMID: 35718875 DOI: 10.1039/d1nr06256e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we study optically resonant substrates fabricated using the previously reported BLIN (biotemplated lithography of inorganic nanostructures) technique with single triangle and bowtie DNA origami as templates. We present the first optical characterization of BLIN-fabricated origami-shaped silver nanoparticle patterns on glass surfaces, comprising optical transmission measurements and surface-enhanced Raman spectroscopy. The formed nanoparticle patterns are examined by optical transmission measurements and used for surface enhanced Raman spectroscopy (SERS) of Rhodamine 6G (R6G) dye molecules. Polarization-resolved simulations reveal that the higher SERS enhancement observed for the bowties is primarily due to spectral overlap of the optical resonances with the Raman transitions of R6G. The results manifest the applicability of the BLIN method and substantiate its potential in parallel and high-throughput substrate manufacturing with engineered optical properties. While the results demonstrate the crucial role of the formed nanogaps for SERS, the DNA origami may enable even more complex nanopatterns for various optical applications.
Collapse
Affiliation(s)
- Kabusure M Kabusure
- Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 2, P.O Box 111, FI-80101, Joensuu, Finland.
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland.
| | - Jiaqi Yang
- Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 2, P.O Box 111, FI-80101, Joensuu, Finland.
| | - Mikko Kataja
- Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 2, P.O Box 111, FI-80101, Joensuu, Finland.
| | - Mwita Chacha
- Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 2, P.O Box 111, FI-80101, Joensuu, Finland.
| | - Sofia Ojasalo
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland.
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Tommi K Hakala
- Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 2, P.O Box 111, FI-80101, Joensuu, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| |
Collapse
|
13
|
Darcy M, Crocker K, Wang Y, Le JV, Mohammadiroozbahani G, Abdelhamid MAS, Craggs TD, Castro CE, Bundschuh R, Poirier MG. High-Force Application by a Nanoscale DNA Force Spectrometer. ACS NANO 2022; 16:5682-5695. [PMID: 35385658 PMCID: PMC9048690 DOI: 10.1021/acsnano.1c10698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
The ability to apply and measure high forces (>10 pN) on the nanometer scale is critical to the development of nanomedicine, molecular robotics, and the understanding of biological processes such as chromatin condensation, membrane deformation, and viral packaging. Established force spectroscopy techniques including optical traps, magnetic tweezers, and atomic force microscopy rely on micron-sized or larger handles to apply forces, limiting their applications within constrained geometries including cellular environments and nanofluidic devices. A promising alternative to these approaches is DNA-based molecular calipers. However, this approach is currently limited to forces on the scale of a few piconewtons. To study the force application capabilities of DNA devices, we implemented DNA origami nanocalipers with tunable mechanical properties in a geometry that allows application of force to rupture a DNA duplex. We integrated static and dynamic single-molecule characterization methods and statistical mechanical modeling to quantify the device properties including force output and dynamic range. We found that the thermally driven dynamics of the device are capable of applying forces of at least 20 piconewtons with a nanometer-scale dynamic range. These characteristics could eventually be used to study other biomolecular processes such as protein unfolding or to control high-affinity interactions in nanomechanical devices or molecular robots.
Collapse
Affiliation(s)
- Michael Darcy
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kyle Crocker
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuchen Wang
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jenny V. Le
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Golbarg Mohammadiroozbahani
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Timothy D. Craggs
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Carlos E. Castro
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ralf Bundschuh
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Zhang C, Li D, Zhang G, Wang X, Mao L, Gan Q, Ding T, Xu H. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions. SCIENCE ADVANCES 2022; 8:eabj9752. [PMID: 35119919 PMCID: PMC8816333 DOI: 10.1126/sciadv.abj9752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the realm of extreme nanophotonics, nanogap plasmons support reliable field enhancements up to 1000, which provide unique opportunities to access a single molecule for strong coupling and a single atom for quantum catalysis. The quantum plasmonics are intriguing but difficult to modulate largely because of the lack of proper spacers that can reversibly actuate the sub-1-nm gaps. Here, we demonstrate that supramolecular systems made of oligoamide sequences can reversibly switch the gap plasmons of Au nanoparticles on mirror between classical and quantum tunneling regimes via supramolecular interactions. The results reveal detailed plasmon shift near the quantum tunneling limit, which fits well with both classical- and quantum-corrected models. In the quantum tunneling regime, we demonstrate that plasmonic hot electron tunneling can further blue shift the quantum plasmons because of the increased conductance in the nanogaps, making it a promising prototype of optical tunable quantum plasmonic devices.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dongyao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangdi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Mao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Quan Gan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Corresponding author. (T.D.); (Q.G.)
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Corresponding author. (T.D.); (Q.G.)
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Gangrade A, Stephanopoulos N, Bhatia D. Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering. NANOSCALE 2021; 13:16834-16846. [PMID: 34622910 DOI: 10.1039/d1nr04475c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices, have started to emerge as an ideal scaffold for use in cellular programming, tissue engineering, and drug delivery applications. We cover herein the applications for DNA as a scaffold for interfacing with, and guiding, the activity of biological systems like cells and tissues. Although DNA is a highly programmable molecular building block, it suffers from a lack of functional capacity for guiding and modulating cells. Coupling DNA to biologically active molecules can bestow bioactivity to these nanodevices. The main goal of such nanodevices is to synthesize systems that can bind to cells and mimic the extracellular environment, and serve as a highly promising toolbox for multiple applications in cellular programming and tissue engineering. DNA-based programmable devices offer a highly promising approach for programming collections of cells, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ankit Gangrade
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, India
| |
Collapse
|
16
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
17
|
Islam MS, Wilkens GD, Wolski K, Zapotoczny S, Heddle JG. Chiral 3D DNA origami structures for ordered heterologous arrays. NANOSCALE ADVANCES 2021; 3:4685-4691. [PMID: 36134307 PMCID: PMC9418780 DOI: 10.1039/d1na00385b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/04/2021] [Indexed: 06/16/2023]
Abstract
The DNA origami technique allows the facile design and production of three-dimensional shapes from single template strands of DNA. These can act as functional devices with multiple potential applications but are constrained by practical limitations on size. Multi-functionality could be achieved by connecting together distinct DNA origami modules in an ordered manner. Arraying of non-identical, three-dimensional DNA origamis in an ordered manner is challenging due for example, to a lack of compatible rotational symmetries. Here we show that we can design and build ordered DNA structures using non-identical 3D building blocks by using DNA origami snub-cubes in left-handed and right-handed forms. These can be modified such that one form only binds to the opposite-handed form allowing regular arrays wherein building blocks demonstrate alternating chirality.
Collapse
Affiliation(s)
- Md Sirajul Islam
- Malopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A Kraków 30-387 Poland
| | - Gerrit David Wilkens
- Malopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A Kraków 30-387 Poland
- School of Molecular Medicine, Medical University of Warsaw Warszawa 02-091 Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 Kraków 30-387 Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 Kraków 30-387 Poland
| | - Jonathan Gardiner Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A Kraków 30-387 Poland
| |
Collapse
|
18
|
Green CM, Hughes WL, Graugnard E, Kuang W. Correlative Super-Resolution and Atomic Force Microscopy of DNA Nanostructures and Characterization of Addressable Site Defects. ACS NANO 2021; 15:11597-11606. [PMID: 34137595 DOI: 10.1021/acsnano.1c01976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To bring real-world applications of DNA nanostructures to fruition, advanced microscopy techniques are needed to shed light on factors limiting the availability of addressable sites. Correlative microscopy, where two or more microscopies are combined to characterize the same sample, is an approach to overcome the limitations of individual techniques, yet it has seen limited use for DNA nanotechnology. We have developed an accessible strategy for high resolution, correlative DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) super-resolution and atomic force microscopy (AFM) of DNA nanostructures, enabled by a simple and robust method to selectively bind DNA origami to cover glass. Using this technique, we examined addressable "docking" sites on DNA origami to distinguish between two defect scenarios-structurally incorporated but inactive docking sites, and unincorporated docking sites. We found that over 75% of defective docking sites were incorporated but inactive, suggesting unincorporated strands played a minor role in limiting the availability of addressable sites. We further explored the effects of strand purification, UV irradiation, and photooxidation on availability, providing insight on potential sources of defects and pathways toward improving the fidelity of DNA nanostructures.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, D.C. 20375, United States
- National Research Council, 500 fifth St NW, Washington, D.C. 20001, United States
| | | | | | | |
Collapse
|
19
|
Ye J, Aftenieva O, Bayrak T, Jain A, König TAF, Erbe A, Seidel R. Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100381. [PMID: 34085729 PMCID: PMC11469289 DOI: 10.1002/adma.202100381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices.
Collapse
Affiliation(s)
- Jingjing Ye
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| | - Olha Aftenieva
- Leibniz‐Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
| | - Türkan Bayrak
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | - Archa Jain
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
- Faculty of Electrical Engineering and Information TechnologyChair of Nanoelectronics TechnologiesTechnische Universität Chemnitz09107ChemnitzGermany
| | - Tobias A. F. König
- Leibniz‐Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| | - Artur Erbe
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | - Ralf Seidel
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| |
Collapse
|
20
|
Williamson P, Ijäs H, Shen B, Corrigan DK, Linko V. Probing the Conformational States of a pH-Sensitive DNA Origami Zipper via Label-Free Electrochemical Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7801-7809. [PMID: 34128683 PMCID: PMC8280702 DOI: 10.1021/acs.langmuir.1c01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/05/2021] [Indexed: 06/12/2023]
Abstract
DNA origami structures represent an exciting class of materials for use in a wide range of biotechnological applications. This study reports the design, production, and characterization of a DNA origami "zipper" structure, which contains nine pH-responsive DNA locks. Each lock consists of two parts that are attached to the zipper's opposite arms: a DNA hairpin and a single-stranded DNA that are able to form a DNA triplex through Hoogsteen base pairing. The sequences of the locks were selected in a way that the zipper adopted a closed configuration at pH 6.5 and an open state at pH 8.0 (transition pKa 7.6). By adding thiol groups, it was possible to immobilize the zipper structure onto gold surfaces. The immobilization process was characterized electrochemically to confirm successful adsorption of the zipper. The open and closed states were then probed using differential pulse voltammetry and electrochemical impedance spectroscopy with solution-based redox agents. It was found that after immobilization, the open or closed state of the zipper in different pH regimes could be determined by electrochemical interrogation. These findings pave the way for development of DNA origami-based pH monitoring and other pH-responsive sensing and release strategies for zipper-functionalized gold surfaces.
Collapse
Affiliation(s)
- Paul Williamson
- Department
of Biomedical Engineering, University of
Strathclyde, 40 George Street, Glasgow G1 1QE, United Kingdom
| | - Heini Ijäs
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Nanoscience
Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Damion K. Corrigan
- Department
of Biomedical Engineering, University of
Strathclyde, 40 George Street, Glasgow G1 1QE, United Kingdom
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, P.O. Box 15100, 00076 Aalto, Finland
| |
Collapse
|
21
|
Ojasalo S, Piskunen P, Shen B, Kostiainen MA, Linko V. Hybrid Nanoassemblies from Viruses and DNA Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1413. [PMID: 34071795 PMCID: PMC8228324 DOI: 10.3390/nano11061413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as "structured" genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.
Collapse
Affiliation(s)
- Sofia Ojasalo
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| |
Collapse
|
22
|
|
23
|
Dass M, Gür FN, Kołątaj K, Urban MJ, Liedl T. DNA Origami-Enabled Plasmonic Sensing. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:5969-5981. [PMID: 33828635 PMCID: PMC8016175 DOI: 10.1021/acs.jpcc.0c11238] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/31/2021] [Indexed: 05/02/2023]
Abstract
The reliable programmability of DNA origami makes it an extremely attractive tool for bottom-up self-assembly of complex nanostructures. Utilizing this property for the tuned arrangement of plasmonic nanoparticles holds great promise particularly in the field of biosensing. Plasmonic particles are beneficial for sensing in multiple ways, from enhancing fluorescence to enabling a visualization of the nanoscale dynamic actuation via chiral rearrangements. In this Perspective, we discuss the recent developments and possible future directions of DNA origami-enabled plasmonic sensing systems. We start by discussing recent advancements in the area of fluorescence-based plasmonic sensing using DNA origami. We then move on to surface-enhanced Raman spectroscopy sensors followed by chiral sensing, both utilizing DNA origami nanostructures. We conclude by providing our own views on the future prospects for plasmonic biosensors enabled using DNA origami.
Collapse
Affiliation(s)
- Mihir Dass
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Fatih N. Gür
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Karol Kołątaj
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Maximilian J. Urban
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
24
|
Constructing Large 2D Lattices Out of DNA-Tiles. Molecules 2021; 26:molecules26061502. [PMID: 33801952 PMCID: PMC8000633 DOI: 10.3390/molecules26061502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.
Collapse
|
25
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Over the past decade, DNA nanotechnology has spawned a broad variety of functional nanostructures tailored toward the enabled state at which applications are coming increasingly in view. One of the branches of these applications is in synthetic biology, where the intrinsic programmability of the DNA nanostructures may pave the way for smart task-specific molecular robotics. In brief, the synthesis of the user-defined artificial DNA nano-objects is based on employing DNA molecules with custom lengths and sequences as building materials that predictably assemble together by obeying Watson-Crick base pairing rules. The general workflow of creating DNA nanoshapes is getting more and more straightforward, and some objects can be designed automatically from the top down. The versatile DNA nano-objects can serve as synthetic tools at the interface with biology, for example, in therapeutics and diagnostics as dynamic logic-gated nanopills, light-, pH-, and thermally driven devices. Such diverse apparatuses can also serve as optical polarizers, sensors and capsules, autonomous cargo-sorting robots, rotary machines, precision measurement tools, as well as electric and magnetic-field directed robotic arms. In this review, we summarize the recent progress in robotic DNA nanostructures, mechanics, and their various implementations.
Collapse
Affiliation(s)
- Sami Nummelin
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Qing Liu
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| |
Collapse
|
27
|
Shen B, Piskunen P, Nummelin S, Liu Q, Kostiainen MA, Linko V. Advanced DNA Nanopore Technologies. ACS APPLIED BIO MATERIALS 2020; 3:5606-5619. [DOI: 10.1021/acsabm.0c00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
28
|
Ferhan AR, Yoon BK, Jeon WY, Cho NJ. Biologically interfaced nanoplasmonic sensors. NANOSCALE ADVANCES 2020; 2:3103-3114. [PMID: 36134263 PMCID: PMC9418064 DOI: 10.1039/d0na00279h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 05/30/2023]
Abstract
Understanding biointerfacial processes is crucial in various fields across fundamental and applied biology, but performing quantitative studies via conventional characterization techniques remains challenging due to instrumentation as well as analytical complexities and limitations. In order to accelerate translational research and address current challenges in healthcare and medicine, there is an outstanding need to develop surface-sensitive technologies with advanced measurement capabilities. Along this line, nanoplasmonic sensing has emerged as a powerful tool to quantitatively study biointerfacial processes owing to its high spatial resolution at the nanoscale. Consequently, the development of robust biological interfacing strategies becomes imperative to maximize its characterization potential. This review will highlight and discuss the critical role of biological interfacing within the context of constructing nanoplasmonic sensing platforms for biointerfacial science applications. Apart from paving the way for the development of highly surface-sensitive characterization tools that will spur fundamental biological interaction studies and improve the overall understanding of biological processes, the basic principles behind biointerfacing strategies presented in this review are also applicable to other fields that involve an interface between an inorganic material and a biological system.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
29
|
Loretan M, Domljanovic I, Lakatos M, Rüegg C, Acuna GP. DNA Origami as Emerging Technology for the Engineering of Fluorescent and Plasmonic-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2185. [PMID: 32397498 PMCID: PMC7254321 DOI: 10.3390/ma13092185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology is a powerful and promising tool for the development of nanoscale devices for numerous and diverse applications. One of the greatest potential fields of application for DNA nanotechnology is in biomedicine, in particular biosensing. Thanks to the control over their size, shape, and fabrication, DNA origami represents a unique opportunity to assemble dynamic and complex devices with precise and predictable structural characteristics. Combined with the addressability and flexibility of the chemistry for DNA functionalization, DNA origami allows the precise design of sensors capable of detecting a large range of different targets, encompassing RNA, DNA, proteins, small molecules, or changes in physico-chemical parameters, that could serve as diagnostic tools. Here, we review some recent, salient developments in DNA origami-based sensors centered on optical detection methods (readout) with a special emphasis on the sensitivity, the selectivity, and response time. We also discuss challenges that still need to be addressed before this approach can be translated into robust diagnostic devices for bio-medical applications.
Collapse
Affiliation(s)
- Morgane Loretan
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| | - Ivana Domljanovic
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland;
| | - Mathias Lakatos
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland;
| | - Guillermo P. Acuna
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| |
Collapse
|
30
|
Piskunen P, Nummelin S, Shen B, Kostiainen MA, Linko V. Increasing Complexity in Wireframe DNA Nanostructures. Molecules 2020; 25:E1823. [PMID: 32316126 PMCID: PMC7221932 DOI: 10.3390/molecules25081823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Structural DNA nanotechnology has recently gained significant momentum, as diverse design tools for producing custom DNA shapes have become more and more accessible to numerous laboratories worldwide. Most commonly, researchers are employing a scaffolded DNA origami technique by "sculpting" a desired shape from a given lattice composed of packed adjacent DNA helices. Albeit relatively straightforward to implement, this approach contains its own apparent restrictions. First, the designs are limited to certain lattice types. Second, the long scaffold strand that runs through the entire structure has to be manually routed. Third, the technique does not support trouble-free fabrication of hollow single-layer structures that may have more favorable features and properties compared to objects with closely packed helices, especially in biological research such as drug delivery. In this focused review, we discuss the recent development of wireframe DNA nanostructures-methods relying on meshing and rendering DNA-that may overcome these obstacles. In addition, we describe each available technique and the possible shapes that can be generated. Overall, the remarkable evolution in wireframe DNA structure design methods has not only induced an increase in their complexity and thus expanded the prevalent shape space, but also already reached a state at which the whole design process of a chosen shape can be carried out automatically. We believe that by combining cost-effective biotechnological mass production of DNA strands with top-down processes that decrease human input in the design procedure to minimum, this progress will lead us to a new era of DNA nanotechnology with potential applications coming increasingly into view.
Collapse
Affiliation(s)
- Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| |
Collapse
|
31
|
Li J, Wang W, Zhang H, Lu Z, Wu W, Shu M, Han H. Programmable DNA Tweezer-Actuated SERS Probe for the Sensitive Detection of AFB1. Anal Chem 2020; 92:4900-4907. [DOI: 10.1021/acs.analchem.9b04822] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenxin Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Mingbo Shu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| |
Collapse
|
32
|
At the Dawn of Applied DNA Nanotechnology. Molecules 2020; 25:molecules25030639. [PMID: 32028556 PMCID: PMC7036935 DOI: 10.3390/molecules25030639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 11/25/2022] Open
|
33
|
Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ. Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 2019; 48:4892-4920. [PMID: 31402369 PMCID: PMC6746594 DOI: 10.1039/c8cs00402a] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA nanotechnology engineered at the solid-liquid interface has advanced our fundamental understanding of DNA hybridization kinetics and facilitated the design of improved biosensing, bioimaging and therapeutic platforms. Three research branches of DNA nanotechnology exist: (i) structural DNA nanotechnology for the construction of various nanoscale patterns; (ii) dynamic DNA nanotechnology for the operation of nanodevices; and (iii) functional DNA nanotechnology for the exploration of new DNA functions. Although the initial stages of DNA nanotechnology research began in aqueous solution, current research efforts have shifted to solid-liquid interfaces. Based on shape and component features, these interfaces can be classified as flat interfaces, nanoparticle interfaces, and soft interfaces of DNA origami and cell membranes. This review briefly discusses the development of DNA nanotechnology. We then highlight the important roles of structural DNA nanotechnology in tailoring the properties of flat interfaces and modifications of nanoparticle interfaces, and extensively review their successful bioapplications. In addition, engineering advances in DNA nanodevices at interfaces for improved biosensing both in vitro and in vivo are presented. The use of DNA nanotechnology as a tool to engineer cell membranes to reveal protein levels and cell behavior is also discussed. Finally, we present challenges and an outlook for this emerging field.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ijäs H, Hakaste I, Shen B, Kostiainen MA, Linko V. Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo. ACS NANO 2019; 13:5959-5967. [PMID: 30990664 PMCID: PMC7076726 DOI: 10.1021/acsnano.9b01857] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
DNA nanotechnology provides a toolbox for creating custom and precise nanostructures with nanometer-level accuracy. These nano-objects are often static by nature and serve as versatile templates for assembling various molecular components in a user-defined way. In addition to the static structures, the intrinsic programmability of DNA nanostructures allows the design of dynamic devices that can perform predefined tasks when triggered with external stimuli, such as drug delivery vehicles whose cargo display or release can be triggered with a specified physical or chemical cue in the biological environment. Here, we present a DNA origami nanocapsule that can be loaded with cargo and reversibly opened and closed by changing the pH of the surrounding solution. Moreover, the threshold pH value for opening/closing can be rationally designed. We characterize the reversible switching and a rapid opening of "pH-latch"-equipped nanocapsules using Förster resonance energy transfer. Furthermore, we demonstrate the full cycle of capsule loading, encapsulation, and displaying the payload using metal nanoparticles and functional enzymes as cargo mimics at physiologically relevant ion concentrations.
Collapse
Affiliation(s)
- Heini Ijäs
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- Nanoscience
Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Iiris Hakaste
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Center of Excellence, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Center of Excellence, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
- E-mail:
| |
Collapse
|