1
|
Ram G, Guha R, Parkash S, Pal S, Bachhar N. Nonbonded Molecular Interaction Controls Aggregation Kinetics of Hydrophobic Molecules in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1830-1843. [PMID: 39818856 DOI: 10.1021/acs.langmuir.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Molecular aggregation frequently occurs during material synthesis, cellular processes, and drug delivery systems, often resulting in decreased performance and efficiency. One major reason for such aggregation in an aqueous solution is hydrophobicity. While the basic understanding of the aggregation process of hydrophobic molecules from a thermodynamic standpoint is known, the present literature lacks a connection between the aggregation kinetics and the molecular basis of hydrophobicity. This study explores how various fluorescent probes (rhodamine dyes) aggregate in an aqueous solution due to their hydrophobicity. The method employs a combination of modeling and characterization to comprehend the aggregation process by examining the nonbonded intermolecular interactions. The aggregation kinetics was analyzed by measuring the average diffusivity of the molecules using fluorescent correlation spectroscopy and NMR diffusion measurements. Through all-atom molecular dynamics (MD) simulations, it has been observed that the level of hydrophobicity is strongly correlated to the total number of hydrogen bonds between water molecules and dyes. In addition, the aggregation frequency of colliding species, which depends on the concentration, is inversely related to hydrogen bonding and the diffusivity of the molecules. This study of small molecules was applied to predict protein aggregation rates, demonstrating strong alignment with the existing literature. The study has also helped to identify and understand the concentration at which a hydrophobic molecule does not aggregate in an aqueous solution. The method developed here could help investigate the aggregation process and its root causes at the molecular level in aqueous systems to develop strategies to control it.
Collapse
Affiliation(s)
- Goga Ram
- Department of Chemical Engineering, Indian Institute of Technology, Jodhpur 342037, India
| | - Rajarshi Guha
- Intel Corporation, 2501 NE Century Boulevard, Hillsboro, Oregon 97124, United States
| | - Surya Parkash
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Nirmalya Bachhar
- Department of Chemical Engineering, Indian Institute of Technology, Jodhpur 342037, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Mondo GB, Cathcarth M, Longo GS, Picco AS, Cardoso MB. Short Zwitterionic Sulfobetaine-Modified Silica Nanoparticles: Is Neutrality Possible? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10856-10867. [PMID: 38683600 DOI: 10.1021/acs.langmuir.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Zwitterionic coatings are an efficient strategy for preventing biomolecule adsorption and enhancing nanoparticle stability in solution. The properties of zwitterions and other antifouling materials, including suppression of nonspecific adsorption and improved colloidal stability of nanoparticles, are believed to derive from their electroneutral and highly hydrophilic nature. Among different zwitterions, short sulfobetaines have been demonstrated to be effective in preventing protein adsorption onto several nanoparticles and providing enhanced colloidal stability. Although zwitterionic sulfobetaine silane (ZS) is electrically neutral, the negatively charged zwitterionic sulfobetaine-functionalized silica nanoparticles (ZS@SiO2NPs) exhibit a similar ζ-potential to nonfunctionalized silica nanoparticles (SiO2NPs). In this work, we present a thorough comprehension of the surface properties of ZS@SiO2NPs, which encompasses the development of meticulous functionalization procedures, detailed characterization approaches, and cutting-edge modeling to address the questions that persist regarding the surface features of ZS@SiO2NPs. The negative charge of ZS@SiO2NPs is due to the stabilization of siloxide from residual surface silanols by the quaternary amine in the sulfobetaine structure. Consequently, we infer that zero-charge ZS@SiO2NPs are unlikely to be obtained since this stabilization increases the dissociation degree of surface silanols, increasing the overall structure negative charge. Additionally, colloidal stability was evaluated in different pH and ionic strength conditions, and it was found that ZS@SiO2NPs are more stable at higher ionic strengths. This suggests that the interaction between ZS and salt ions prevents the aggregation of ZS@SiO2NPs. Together, these results shed light on the nature of the ZS@SiO2NP negative charge and possible sources for the remarkable colloidal stability of zwitterionic nanoparticles in complex media.
Collapse
Affiliation(s)
- Gabriela Borba Mondo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, Brazil
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Mateus Borba Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, Brazil
| |
Collapse
|
3
|
Wu Y, Yu Q, Joung Y, Jeon CS, Lee S, Pyun SH, Joo SW, Chen L, Choo J. Highly Uniform Self-Assembly of Gold Nanoparticles by Butanol-Induced Dehydration and Its SERS Applications in SARS-CoV-2 Detection. Anal Chem 2023; 95:12710-12718. [PMID: 37594054 DOI: 10.1021/acs.analchem.3c01348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We report the development of a reproducible and highly sensitive surface-enhanced Raman scattering (SERS) substrate using a butanol-induced self-assembly of gold nanoparticles (AuNPs) and its application as a rapid diagnostic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The butanol-induced self-assembly process was used to generate a uniform assembly of AuNPs, with multiple hotspots, to achieve high reproducibility. When an aqueous droplet containing AuNPs and target DNAs was dropped onto a butanol droplet, butanol-induced dehydration occurred, enriching the target DNAs around the AuNPs and increasing the loading density of the DNAs on the AuNP surface. The SERS substrate was evaluated by using Raman spectroscopy, which showed strong electromagnetic enhancement of the Raman signals. The substrate was then tested for the detection of SARS-CoV-2 using SERS, and a very low limit of detection (LoD) of 3.1 × 10-15 M was obtained. This provides sufficient sensitivity for the SARS-CoV-2 screening assay, and the diagnostic time is significantly reduced as no thermocycling steps are required. This study demonstrates a method for the butanol-induced self-assembly of AuNPs and its application as a highly sensitive and reproducible SERS substrate for the rapid detection of SARS-CoV-2. The results suggest the potential of this approach for developing rapid diagnostic platforms for other biomolecules and infectious diseases.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam 13461, South Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan 15588, South Korea
| | | | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
4
|
Saha D, Kumar S, Mata JP, Whitten AE, Aswal VK. Competitive effects of salt and surfactant on the structure of nanoparticles in a binary system of nanoparticle and protein. Phys Chem Chem Phys 2023; 25:22130-22144. [PMID: 37563993 DOI: 10.1039/d3cp02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments have been carried out to study the competitive effects of NaCl and sodium dodecyl sulfate (SDS) surfactant on the evolution of the structure and interactions in a silica nanoparticle-Bovine serum albumin (BSA) protein system. The unique advantage of contrast-matching SANS has been utilized to particularly probe the structure of nanoparticles in the multi-component system. Silica nanoparticles and BSA protein both being anionic remain largely individual in the solution without significant adsorption. The non-adsorbing nature of protein is known to cause depletion attraction between nanoparticles at higher protein concentrations. The nanoparticles undergo immediate aggregation in the nanoparticle-BSA system on the addition of a small amount of salt [referred as the critical salt concentration (CSC)], much less than that required to induce aggregation in a pure nanoparticle dispersion. The salt ions screen the electrostatic repulsion between the nanoparticles, whereby the BSA-induced depletion attraction dominates the system and contributes to the nanoparticle aggregation of a mass fractal kind of morphology. Further, the addition of SDS in this system interestingly suppresses nanoparticle aggregation for salt concentrations lower than the CSC. The presence of SDS gives rise to additional electrostatic repulsion in the system by binding with the BSA protein via electrostatic and hydrophobic interactions. For salt concentrations higher than the CSC, the formation of clusters of nanoparticles is inevitable even in the presence of protein-surfactant complexes, but the mass fractal kind of branched aggregates transform to surface fractals. This has been attributed to the BSA-SDS complex induced depletion attraction along with salt-driven screening of electrostatic repulsion. Thus, the interplay of depletion and electrostatic and hydrophobic interactions has been utilized to tune the structures formed in a multicomponent silica nanoparticle-BSA-SDS/NaCl system.
Collapse
Affiliation(s)
- Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Juelich Centre for Neutron Science-4, Forschungszentrum Juelich, Juelich-52425, Germany
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
5
|
Scott DM, Prud'homme RK, Priestley RD. Effects of the polymer glass transition on the stability of nanoparticle dispersions. SOFT MATTER 2023; 19:1212-1218. [PMID: 36661133 DOI: 10.1039/d2sm01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In addition to the repulsive and attractive interaction forces described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, many charged colloid systems are stabilized by non-DLVO contributions stemming from specific material attributes. Here, we investigate non-DLVO contributions to the stability of polymer colloids stemming from the intra-particle glass transition temperature (Tg). Flash nanoprecipitation is used to fabricate nanoparticles (NPs) from a library of polymers and dispersion stability is studied in the presence of both hydrophilic and hydrophobic salts. When adding KCl, stability undergoes a discontinuous decrease as Tg increases above room temperature, indicating greater stability of rubbery NPs over glassy NPs. Glassy NPs are also found to interact strongly with hydrophobic phosphonium cations (PR4+), yielding charge inversion and intermediate aggregation while rubbery NPs resist ion adsorption. Differences in the lifetime of ionic structuration within mobile surface layers is presented as a potential mechanism underlying the observed phenomenon.
Collapse
Affiliation(s)
- Douglas M Scott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Sarkar S, Herath AC, Mukherjee D, Mandler D. Ionic strength induced local electrodeposition of ZnO nanoparticles. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kato H, Nakamura A, Shimizu M. Effect of surfactant micelle size on the dispersibility of aqueous carbon black particle suspensions prepared by ultrasonication. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Li M, Kobayashi M. The aggregation and charging of natural clay allophane: Critical coagulation ionic strength in the presence of multivalent counter-ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Zemb T, Rosenberg R, Marčelja S, Haffke D, Dufrêche JF, Kunz W, Horinek D, Cölfen H. Phase separation of binary mixtures induced by soft centrifugal fields. Phys Chem Chem Phys 2021; 23:8261-8272. [PMID: 33527947 DOI: 10.1039/d0cp01527j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use the model system ethanol-dodecane to demonstrate that giant critical fluctuations induced by easily accessible weak centrifugal fields as low as 2000g can be observed above the miscibility gap of a binary liquid mixture. Moreover, several degrees above the phase transition, i.e. in the one-phase region, strong gradients of ethanol concentration occur upon centrifugation. In this case, the standard interpretation of sedimentation equilibrium in the analytical ultracentrifuge (AUC) yields an apparent molar mass of ethanol three orders of magnitude higher than the real value. Notably, these composition gradients have no influence on the distribution gradient of solutes such as dyes like Nile red. The thick opaque interphase formed upon centrifugation does not appear as the commonly observed sharp meniscus, but as a turbidity zone, similar to critical opalescence. This layer is a few millimeters thick and separates two fluids with low compositional gradients. All these effects can be qualitatively understood and explained using the Flory-Huggins solution model coupled to classical density functional theory (DFT). In this domain hetero-phase fluctuations can be triggered by gravity even far from the critical point. Taking into account Jean Perrin's approach to external fields in colloids, a self-consistent definition of the Flory effective volume and an explicit calculation of the total free energy per unit volume is possible.
Collapse
Affiliation(s)
- Thomas Zemb
- Institute for Separation Chemistry ICSM U Montpellier/CEA/CNRS/ENSCM, Marcoule, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Design of facile technology for the efficient removal of hydroxypropyl guar gum from fracturing fluid. PLoS One 2021; 16:e0247948. [PMID: 33661981 PMCID: PMC7932517 DOI: 10.1371/journal.pone.0247948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
With the increasing demand for energy, fracturing technology is widely used in oilfield operations over the last decades. Typically, fracturing fluids contain various additives such as cross linkers, thickeners and proppants, and so forth, which makes it possess the properties of considerably complicated components and difficult processing procedure. There are still some difficult points needing to be explored and resolved in the hydroxypropyl guar gum (HPG) removal process, e.g., high viscosity and removal of macromolecular organic compounds. Our works provided a facile and economical HPG removal technology for fracturing fluids by designing a series of processes including gel-breaking, coagulation and precipitation according to the diffusion double layer theory. After this treatment process, the fracturing fluid can meet the requirements of reinjection, and the whole process was environment friendly without secondary pollution characteristics. In this work, the fracturing fluid were characterized by scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy technologies, etc. Further, the micro-stabilization and destabilization mechanisms of HPG in fracturing fluid were carefully investigated. This study maybe opens up new perspective for HPG removal technologies, exhibiting a low cost and strong applicability in both fundamental research and practical applications.
Collapse
|
11
|
Hydrothermal Synthesis of TiO 2 Aggregates and Their Application as Negative Electrodes for Lithium-Ion Batteries: The Conflicting Effects of Specific Surface and Pore Size. MATERIALS 2021; 14:ma14040916. [PMID: 33671971 PMCID: PMC7919033 DOI: 10.3390/ma14040916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
TiO2 aggregates of controlled size have been successfully prepared by hydrothermal synthesis using TiO2 nanoparticles of different sizes as a building unit. In this work, different techniques were used to characterize the as-prepared TiO2 aggregates, e.g., X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer, Emmett and Teller technique (BET), field emission gun scanning electron microscopy (FEGSEM), electrochemical measurements etc. The size of prepared TiO2 aggregates varied from 10–100 nm, and their pore size from around 5–12 nm; this size has been shown to depend on synthesis temperature. The mechanism of the aggregate formations was discussed in terms of efficiency of collision and coalescence processes. These newly synthetized TiO2 aggregates have been investigated as potential negative insertion electrode materials for lithium-ion batteries. The influence of specific surface areas and pore sizes on the improved capacity was discussed—and conflicting effects pointed out.
Collapse
|
12
|
Everts JC, Senyuk B, Mundoor H, Ravnik M, Smalyukh II. Anisotropic electrostatic screening of charged colloids in nematic solvents. SCIENCE ADVANCES 2021; 7:7/5/eabd0662. [PMID: 33571118 PMCID: PMC7840135 DOI: 10.1126/sciadv.abd0662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/09/2020] [Indexed: 05/23/2023]
Abstract
The physical behavior of anisotropic charged colloids is determined by their material dielectric anisotropy, affecting colloidal self-assembly, biological function, and even out-of-equilibrium behavior. However, little is known about anisotropic electrostatic screening, which underlies all electrostatic effective interactions in such soft or biological materials. In this work, we demonstrate anisotropic electrostatic screening for charged colloidal particles in a nematic electrolyte. We show that material anisotropy behaves markedly different from particle anisotropy. The electrostatic potential and pair interactions decay with an anisotropic Debye screening length, contrasting the constant screening length for isotropic electrolytes. Charged dumpling-shaped near-spherical colloidal particles in a nematic medium are used as an experimental model system to explore the effects of anisotropic screening, demonstrating competing anisotropic elastic and electrostatic effective pair interactions for colloidal surface charges tunable from neutral to high, yielding particle-separated metastable states. Generally, our work contributes to the understanding of electrostatic screening in nematic anisotropic media.
Collapse
Affiliation(s)
- Jeffrey C Everts
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Bohdan Senyuk
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA
| | - Haridas Mundoor
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ivan I Smalyukh
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA.
- Department of Electrical, Computer and Energy Engineering and Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
13
|
Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heteroaggregation and homoaggregation is investigated with time-resolved multi-angle dynamic light scattering. The aggregation rates are measured in aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles in the presence of sodium octyl sulfate (SOS) and sodium dodecyl sulfate (SDS). As revealed by electrophoresis, the surfactants adsorb to both types of particles. For the AL particles, the adsorption of surfactants induces a charge reversal and triggers fast aggregation close to the isoelectric point (IEP). The negatively charged SL particles remain negatively charged and stable in the whole concentration range investigated. The heteroaggregation rates for AL and SL particles are fast at low surfactant concentrations, where the particles are oppositely charged. At higher concentrations, the heteroaggregation slows down above the IEP of the AL particles, where the particles become like-charged. The SDS has higher affinity to the surface compared to the SOS, which induces a shift of the IEP and of the fast aggregation regime to lower surfactant concentrations.
Collapse
|
14
|
Krzysko AJ, Nakouzi E, Zhang X, Graham TR, Rosso KM, Schenter GK, Ilavsky J, Kuzmenko I, Frith MG, Ivory CF, Clark SB, Weston JS, Weigandt KM, De Yoreo JJ, Chun J, Anovitz LM. Correlating inter-particle forces and particle shape to shear-induced aggregation/fragmentation and rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle X-ray scattering. J Colloid Interface Sci 2020; 576:47-58. [DOI: 10.1016/j.jcis.2020.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
|
15
|
Dörner L, Schmutz P, Kägi R, Kovalenko MV, Jeurgens LPH. Electrophoretic Deposition of Nanoporous Oxide Coatings from Concentrated CuO Nanoparticle Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8075-8085. [PMID: 32573251 DOI: 10.1021/acs.langmuir.0c00720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrophoretic deposition (EPD) of nanoporous oxide coatings is an interesting research avenue owing to the experimental simplicity and broad scope of applications and materials. In this study, the properties of concentrated (up to 5000 mg/L), nonaqueous CuO nanoparticle (NP) dispersions were tailored to produce micrometer-thick, nanoporous CuO films by EPD. In particular, we performed a systematic investigation of the electrophoretic mobilities and size distributions of dispersed CuO aggregates and developing agglomerates in different organic solvents for concentrations ranging from 50 to 5000 mg/L with and without surfactant addition. Time-resolved dynamic light scattering analyses showed that aggregate mobilities and agglomeration rates decrease with increasing hydrocarbon chain length of the organic solvent (from ethanol to hexanol) and thus with increasing viscosity. The highest electrophoretic mobility was obtained for CuO NP aggregates and agglomerates dispersed in ethanol as a solvent. However, the addition of ≥0.5 wt % acetylacetone as a surfactant is required to stabilize these dispersions for subsequent EPD and at the same time introduce a net attractive (electrostatic) interaction between neighboring agglomerates on the substrate to promote layer formation during the EPD step. The produced micrometer-thick nanoporous CuO coatings can serve as high surface area nanostructured materials or nanoporous scaffolds in catalysis, combustion, propellants, and nanojoining.
Collapse
Affiliation(s)
- Lars Dörner
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- ETH Zürich, Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Zürich 8093, Switzerland
| | - Patrik Schmutz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Ralf Kägi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Maksym V Kovalenko
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- ETH Zürich, Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Zürich 8093, Switzerland
| | - Lars P H Jeurgens
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
16
|
He Y, Liu Y, Guo F, Pang K, Fang B, Wang Y, Chang D, Xu Z, Gao C. Dynamic dispersion stability of graphene oxide with metal ions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Trefalt G, Cao T, Sugimoto T, Borkovec M. Heteroaggregation between Charged and Neutral Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5303-5311. [PMID: 32324407 DOI: 10.1021/acs.langmuir.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Experimentally determined heteroaggregation rates between charged and neutral colloidal particles are reported for the first time. Different positively and negatively charged polystyrene latex particles are investigated. The neutral particles are obtained through adsorption of an appropriate amount of oppositely charged additives, such as aliphatic oligoamines, iron cyanide complexes, or alkyl sulfates. Heteroaggregation rates were measured with time-resolved multiangle light scattering. One observes that heteroaggregation between charged and neutral particles is always fast and diffusion controlled. These experimental values are compared with calculations of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, whereby one finds that this heteroaggregation process is highly sensitive to charge regulation conditions. The comparison with experiments shows unambiguously that the surface of the neutral particles regulates strongly and probably behaves close to a constant potential surface. This observation is in line with direct force measurements on similar systems and further agrees with the fact that for neutral surfaces the capacitance of the diffuse layer is expected to be much smaller than the one of the inner layer.
Collapse
Affiliation(s)
- Gregor Trefalt
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Tianchi Cao
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Takuya Sugimoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyou-ku, Tokyo 113-8657, Japan
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
18
|
Cao T, Trefalt G, Borkovec M. Measuring slow heteroaggregation rates in the presence of fast homoaggregation. J Colloid Interface Sci 2020; 566:143-152. [DOI: 10.1016/j.jcis.2020.01.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
|
19
|
Etha SA, Sivasankar VS, Sachar HS, Das S. Coating for preventing nonspecific adhesion mediated biofouling in salty systems: Effect of the electrostatic and van der waals interactions. Electrophoresis 2020; 41:657-665. [PMID: 32092163 DOI: 10.1002/elps.201900348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/10/2022]
Abstract
Development of anti-biofouling coating has attracted immense attention for reducing the massively detrimental effects of biofouling in systems ranging from ship hulls and surgical instruments to catheters, implants, and stents. In this paper, we propose a model to quantify the role of electrostatic and van der Waals (vdW) forces in dictating the efficacy of dielectric coating for preventing the nonspecific adhesion mediated biofouling in salty systems. The model considers a generic charged lipid-bilayer encapsulated vesicle-like structure representing the bio-organism. Also, we consider the fouling caused by the nonspecific adhesion of the bio-organism on the substrate, without accounting for the explicit structures (e.g., pili, appendages) or conditions (e.g., surface adhesins secreted by the organisms) involved in the adhesion of specific microorganism. The model is tested by considering the properties of actual coating materials and biofouling causing microorganisms (bacteria, fungi, algae). Results show that while the electrostatic-vdW effect can be significant in anti-biofouling action for cases where the salt concentration is relatively low (e.g., saline solution for surgical instruments), it might not be effective for marine environment where the salt concentration is much higher. The findings, therefore, point to a hitherto unexplored driving mechanism of anti-biofouling action of the coating. Such an identification will also enable the appropriate choices of the coating materials (e.g., possible dielectric material with volume charge) and other system parameters (e.g., salinity of the solution for storing the surgical instruments) that will significantly improve the efficiency of the coatings in preventing the nonspecific adhesion mediated biofouling.
Collapse
Affiliation(s)
- Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | | | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
20
|
Porto Santos T, Cunha RL, Tabeling P, Cejas CM. Colloidal particle deposition on microchannel walls, for attractive and repulsive surface potentials. Phys Chem Chem Phys 2020; 22:17236-17246. [DOI: 10.1039/d0cp01999b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
When both surfaces possess opposite charges, particle deposition increases at low ionic strengths due to van der Waals forces assisted by electrostatic attraction.
Collapse
Affiliation(s)
- Tatiana Porto Santos
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato
- Brazil
- Microfluidics, MEMS
- Nanostructures Laboratory
- CNRS Chimie Biologie Innovation (CBI)
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato
- Brazil
| | - Patrick Tabeling
- Microfluidics, MEMS
- Nanostructures Laboratory
- CNRS Chimie Biologie Innovation (CBI)
- UMR 8231
- Institut Pierre Gilles de Gennes (IPGG)
| | - Cesare M. Cejas
- Microfluidics, MEMS
- Nanostructures Laboratory
- CNRS Chimie Biologie Innovation (CBI)
- UMR 8231
- Institut Pierre Gilles de Gennes (IPGG)
| |
Collapse
|
21
|
Trompette JL, Lahitte JF. Influence of the Counterion Nature on the Stability Sequence of Hydrophobic Latex Particles. J Phys Chem B 2019; 123:3859-3865. [PMID: 30950614 DOI: 10.1021/acs.jpcb.9b01226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation kinetics of negatively charged polystyrene latex particles in the presence of monovalent electrolytes have been investigated. The inferred coagulation critical concentrations were compared to establish the stability sequence. With the same representative co-ions, this sequence is reversed when using kosmotrope sodium and chaotrope potassium cations. The results have been ascribed to a variable competition of the co-ions toward the hydrophobic surface depending on the lyotropic nature of the associated counterion. They provide new insights into the implication of ionic specificity in the stability behavior of aqueous dispersions of charged colloids.
Collapse
Affiliation(s)
- Jean-Luc Trompette
- Laboratoire de Génie Chimique UMR 5503 , Université de Toulouse, CNRS , 4 Allée Emile Monso , 31432 Toulouse Cedex 4 , France
| | - Jean-François Lahitte
- Laboratoire de Génie Chimique UMR 5503 , Université de Toulouse, CNRS , 4 Allée Emile Monso , 31432 Toulouse Cedex 4 , France
| |
Collapse
|
22
|
Farrokhbin M, Stojimirović B, Galli M, Khajeh Aminian M, Hallez Y, Trefalt G. Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 2019; 21:18866-18876. [DOI: 10.1039/c9cp01985e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering.
Collapse
Affiliation(s)
- Mojtaba Farrokhbin
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Biljana Stojimirović
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Marco Galli
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | | | - Yannick Hallez
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|