1
|
Li B, Xiang W, Dou X, Wu Y, Zhang W, Wang Z, Wang J. Coarse-Grained Molecular Dynamics Simulation of Nucleation and Stability of Electrochemically Generated Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8497-8509. [PMID: 40145296 DOI: 10.1021/acs.langmuir.4c04049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
With growing concerns over environmental pollution associated with fossil fuels, hydrogen (H2) energy has emerged as a promising alternative. Water electrolysis, a key hydrogen production method, is fundamentally governed by the nucleation and stability of electrochemically generated nanobubbles. This study employs coarse-grained molecular dynamics (MD) simulations incorporating a self-programming gas generation algorithm to investigate the nucleation and growth dynamics of nanobubbles on hydrophilic and hydrophobic electrodes. Key parameters, such as contact angle, electric current, and nanobubble number density, were computed to validate the MD model. The findings reveal a three-stage nucleation process: (i) induction─gas molecules accumulate to form a nucleus, (ii) nucleation and growth─gas nuclei expand into nanobubbles, and (iii) stationary state─nanobubble growth ceases. Increased electrode hydrophilicity resulted in larger nanobubble contact angles, aligning well with classical nucleation theory (CNT) at the nanoscale. Three distinct nanobubble types─surface, solution, and pancake nanobubbles─were identified, each exhibiting unique interfacial behaviors based on electrode properties. Solution nanobubbles primarily formed on hydrophilic electrodes, pancake nanobubbles adhered to hydrophobic electrodes, and surface nanobubbles appeared as spherical caps. Energy analysis and phase mapping further delineated the critical parameter ranges for these nanobubble modes, providing valuable insights for optimizing electrode materials to enhance hydrogen production efficiency.
Collapse
Affiliation(s)
- Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Xiang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohui Dou
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Petroleum Engineering Technology Research Institute of Sinopec, Jiangsu Oilfield Company, Yangzhou 225009, China
| | - Yan Wu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Zhang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhentao Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junfeng Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Yang H, Xing Y, Zhang F, Gui X, Cao Y. Contact angle and stability of interfacial nanobubble supported by gas monolayer. FUNDAMENTAL RESEARCH 2024; 4:35-42. [PMID: 39659843 PMCID: PMC11630698 DOI: 10.1016/j.fmre.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Since solid-liquid interfacial nanobubbles (INBs) were first imaged, their long-term stability and large contact angle have been perplexing scientists. This study aimed to investigate the influence of internal gas density and external gas monolayers on the contact angle and stability of INB using molecular dynamics simulations. First, the contact angle of a water droplet was simulated at different nitrogen densities. The results showed that the contact angle increased sharply with an increase in nitrogen density, which was mainly caused by the decrease in solid-gas interfacial tension. However, when the nitrogen density reached 2.57 nm-3, an intervening gas monolayer (GML) was formed between the solid and water. After the formation of GML, the contact angle slightly increased with increasing gas density. The contact angle increased to 180° when the nitrogen density reached 11.38 nm-3, indicating that INBs transformed into a gas layer when they were too small. For substrates with different hydrophobicities, the contact angle after the formation of GML was always larger than 140° and it was weakly correlated with substrate hydrophobicity. The increase in contact angle with gas density represents the evolution of contact angle from macro- to nano-bubble, while the formation of GML may correspond to stable INBs. The potential of mean force curves demonstrated that the substrate with GML could attract gas molecules from a longer distance without the existence of a potential barrier compared with the bare substrate, indicating the potential of GML to act as a gas-collecting panel. Further research indicated that GML can function as a channel to transport gas molecules to INBs, which favors stability of INBs. This research may shed new light on the mechanisms underlying abnormal contact angle and long-term stability of INBs.
Collapse
Affiliation(s)
- Haichang Yang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yaowen Xing
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Fanfan Zhang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiahui Gui
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Yijun Cao
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
- Henan Province Industrial Technology Research Institution of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Montazeri SM, Kalogerakis N, Kolliopoulos G. Effect of chemical species and temperature on the stability of air nanobubbles. Sci Rep 2023; 13:16716. [PMID: 37794127 PMCID: PMC10550960 DOI: 10.1038/s41598-023-43803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
The colloidal stability of air nanobubbles (NBs) was studied at different temperatures (0-30 °C) and in the presence of sulfates, typically found in mining effluents, in a wide range of Na2SO4 concentrations (0.001 to 1 M), along with the effect of surfactants (sodium dodecyl sulfate), chloride salts (NaCl), and acid/base reagents at a pH range from 4 to 9. Using a nanobubble generator based on hydrodynamic cavitation, 1.2 × 108 bubbles/mL with a typical radius of 84.66 ± 7.88 nm were generated in deionized water. Multiple evidence is provided to prove their presence in suspension, including the Tyndall effect, dynamic light scattering, and nanoparticle size analysis. Zeta potential measurements revealed that NBs are negatively charged even after two months (from - 19.48 ± 1.89 to - 10.13 ± 1.71 mV), suggesting that their stability is due to the negative charge on their surface. NBs were found to be more stable in alkaline solutions compared to acidic ones. Further, low amounts of both chloride and sulfate dissolved salts led to a reduction of the size of NBs. However, when high amounts of dissolved salts are present, NBs are more likely to coalesce, and their size to be increased. Finally, the investigation of the stability of air NBs at low temperatures revealed a non-monotonic relationship between temperature and NBs upon considering water self-ionization and ion mobility. This research aims to open a new frontier towards the application of the highly innovative NBs technology on the treatment of mining, mineral, and metal processing effluents, which are challenging aqueous solutions containing chloride and sulfate species.
Collapse
Affiliation(s)
- Seyed Mohammad Montazeri
- Department of Mining, Metallurgical, and Materials Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Georgios Kolliopoulos
- Department of Mining, Metallurgical, and Materials Engineering, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
4
|
Nie T, Li Z, Luo X, She Y, Liang L, Xu Q, Guo L. Single bubble dynamics on a TiO2 photoelectrode surface during photoelectrochemical water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Fang H, Qi J, Wang Y, Yuan K, Zhang L, Hu J. Interfacial Micropancakes: Gas or Contaminations? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7914-7920. [PMID: 35713371 DOI: 10.1021/acs.langmuir.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Micropancake, a flat domain with micrometer-scale lateral size and a few nanometer thickness, is usually accompanied by the generation of interfacial nanobubbles at the liquid/solid surfaces. Unlike the nanobubbles, micropancakes are difficult to be produced efficiently, impeding further investigations of their mysterious properties. Very recently, An et al. even argued that the previously observed micropancakes were most likely the contaminate, not the gas layers. Herein, to reveal the nature of micropancakes with solid evidence, we presented the in situ characterization of micropancakes at a highly oriented pyrolytic graphite (HOPG) surface produced by the ethanol-water exchange or gas-supersaturated water. By washing with deeply degassed water (DW), the dissolution of those micropancakes was clearly observed, indicating that they may very well be composed of gas. In addition, the analysis of the force measurements showed the intrinsic differences between those gaseous micropancakes and the insoluble organic films. The data and results supported the interpretation that the real existence of gas micropancakes at liquid/solid surfaces.
Collapse
Affiliation(s)
- Hengxin Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncheng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Yuan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
6
|
Hu K, Luo L, Sun X, Li H. Unraveling the effects of gas species and surface wettability on the morphology of interfacial nanobubbles. NANOSCALE ADVANCES 2022; 4:2893-2901. [PMID: 36132003 PMCID: PMC9418701 DOI: 10.1039/d2na00009a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The morphology of interfacial nanobubbles (INBs) is a crucial but controversial topic in nanobubble research. We carried out atomistic molecular dynamics (MD) simulations to comprehensively study the morphology of INBs controlled by several determinant factors, including gas species, surface wettability, and bubble size. The simulations show that H2, O2 and N2 can all form stable INBs, with the contact angles (CAs, on the liquid side) following the order CA(H2) < CA(N2) < CA(O2), while CO2 prefers to form a gas film (pancake) structure on the substrate. The CA of INBs demonstrates a linear relation with the strength of interfacial interaction; however, a limited bubble CA of ∼25° is found on superhydrophilic surfaces. The high gas density and high internal pressure of the INBs are further confirmed, accompanied by strong interfacial gas enrichment (IGE) behavior. The morphology study of differently sized INBs shows that the internal density of the gas is drastically decreased with the bubble size at the initial stage of bubble nucleation, while the CA remains almost constant. Based on the simulation results, a modified Young's equation is presented for describing the extraordinary morphology of INBs.
Collapse
Affiliation(s)
- Kadi Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemistry Technology Beijing 100029 PR China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Xiaoming Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemistry Technology Beijing 100029 PR China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemistry Technology Beijing 100029 PR China
| |
Collapse
|
7
|
Thakkar R, Gajaweera S, Comer J. Organic contaminants and atmospheric nitrogen at the graphene-water interface: a simulation study. NANOSCALE ADVANCES 2022; 4:1741-1757. [PMID: 36132158 PMCID: PMC9417612 DOI: 10.1039/d1na00570g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Ordered nanoscale patterns have been observed by atomic force microscopy at graphene-water and graphite-water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene-water interface. Despite the high concentration of N2 in ambient air, we find that its expected occupancy at the graphene-water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene-water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 μg m-3, which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene-water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43-0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N2, water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface.
Collapse
Affiliation(s)
- Ravindra Thakkar
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| | - Sandun Gajaweera
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| |
Collapse
|
8
|
Teshima H, Kusudo H, Bistafa C, Yamaguchi Y. Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain? NANOSCALE 2022; 14:2446-2455. [PMID: 35098963 DOI: 10.1039/d1nr07428h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanobubbles at solid-liquid interfaces play a key role in various physicochemical phenomena and it is crucial to understand their unique properties. However, little is known about their interfacial tensions due to the lack of reliable calculation methods. Based on mechanical and thermodynamic insights, we quantified for the first time the liquid-gas, solid-liquid, and solid-gas interfacial tensions of submicron-sized nitrogen bubbles at graphite-water interfaces using molecular dynamics (MD) analysis. It was revealed that Young's equation holds even for nanobubbles with different radii. We found that the liquid-gas and solid-liquid interfacial tensions were not largely affected by the gas density inside the nanobubbles. In contrast, the size effect on the solid-gas interfacial tension was observed, namely, the value dramatically decreased upon an increase in the gas density due to gas adsorption on the solid surface. However, our quantitative evaluation also revealed that the gas density effect on the contact angles is negligible when the footprint radius is larger than 50 nm, which is a typical range observed in experiments, and thus the flat shape and stabilization of submicron-sized surface bubbles observed in experiments cannot be explained only by the changes in interfacial tensions due to the van der Waals interaction-induced gas adsorption, namely by Young's equation without introducing the pinning effect. Based on our analysis, it was clarified that additional factors such as the differences in the studied systems are needed to explain the unresolved open issues - a satisfactory explanation for the nanobubbles in MD simulations being ultradense, non-flat, and stable without pinning.
Collapse
Affiliation(s)
- Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, Nishi-Ku, Motooka 744, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi-Ku, Motooka 744, Fukuoka 819-0395, Japan
| | - Hiroki Kusudo
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
| | - Carlos Bistafa
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
| | - Yasutaka Yamaguchi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
- Water Frontier Research Center (WaTUS), Tokyo University of Science, Shinjuku-Ku, Kagurazaka 1-3, 162-8601, Japan
| |
Collapse
|
9
|
Suvira M, Zhang B. Single-Molecule Interactions at a Surfactant-Modified H 2 Surface Nanobubble. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13816-13823. [PMID: 34788049 DOI: 10.1021/acs.langmuir.1c01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In schematics and cartoons, the gas-liquid interface is often drawn as solid lines that aid in distinguishing the separation of the two phases. However, on the molecular level, the structure, shape, and size of the gas-liquid interface remain elusive. Furthermore, the interactions of molecules at gas-liquid interfaces must be considered in various contexts, including atmospheric chemical reactions, wettability of surfaces, and numerous other relevant phenomena. Hence, understanding the structure and interactions of molecules at the gas-liquid interface is critical for further improving technologies that operate between the two phases. Electrochemically generated surface nanobubbles provide a stable, reproducible, and high-throughput platform for the generation of a nanoscale gas-liquid boundary. We use total internal reflection fluorescence microscopy to image single-fluorophore labeling of surface nanobubbles in the presence of a surfactant. The accumulation of a surfactant on the nanobubble surface changes the interfacial properties of the gas-liquid interface. The single-molecule approach reveals that the fluorophore adsorption and residence lifetime at the interface is greatly impacted by the charge of the surfactant layer at the bubble surface. We demonstrate that the fluorescence readout is either short- or long-lived depending on the repulsive or attractive environment, respectively, between fluorophores and surfactants. Additionally, we investigated the effect of surfactant chain length and salt type and concentration on the fluorophore lifetime at the nanobubble surface.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
10
|
Xi W, Feng H, Liu D, Chen L, Zhang Y, Li Q. Electrocatalytic generation and tuning of ultra-stable and ultra-dense nanometre bubbles: an in situ molecular dynamics study. NANOSCALE 2021; 13:11242-11249. [PMID: 34152337 DOI: 10.1039/d1nr01588e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic generation of nanometre gas bubbles (nanobubbles) and their tuning are important for many energy and chemical processes. Studies have sought to use indirect or ex situ methods to investigate the dynamics and properties of nanobubbles, which are of fundamental interest. Alternatively, we present a molecular dynamics simulation method, which features in situ and high spatial resolution, to directly address these fundamentals. Particularly, our simulations can quantitatively reproduce the generation of ultra-stable and ultra-dense nanobubbles observed in electrochemical experiments. More importantly, our results demonstrate that the classical nucleation theory is still valid even for the scale down to several nanometres, to predict the dynamics and properties of nanobubbles. This provides general guidelines to design efficient nanocatalysts and nanoelectrodes. In our specific case, nanoelectrodes with wetting angles below 71° can suppress the generation of surface nanobubbles.
Collapse
Affiliation(s)
- Wenjing Xi
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Longfei Chen
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiang Li
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
|
12
|
Zhang F, Sun L, Yang H, Gui X, Schönherr H, Kappl M, Cao Y, Xing Y. Recent advances for understanding the role of nanobubbles in particles flotation. Adv Colloid Interface Sci 2021; 291:102403. [PMID: 33780858 DOI: 10.1016/j.cis.2021.102403] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Traditional froth flotation is the primary method for the separation and upgrading of fine mineral particles. However, it is still difficult for micro-fine and low-quality minerals to effectively separate. It is generally believed that bubble miniaturization is of great significance to improve flotation efficiency. Due to their unique physical and chemical properties, the application of nanobubbles (NBs) in ore flotation and other fields has been widely investigated as an important means to solve the problems of fine particle separation. Therefore, a fundamental understanding of the effect of NBs on flotation is a prerequisite to adapt it for the treatment of fine and low-quality minerals for separation. In this paper, recent advances in the field of nanobubble (NB) formation, preparation and stability are reviewed. In particular, we highlight the latest progress in the role of NBs on particles flotation and focus in particular on the particle-particle and particle-bubble interaction. A discussion of the current knowledge gap and future directions is provided.
Collapse
Affiliation(s)
- Fanfan Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Lijuan Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Haichang Yang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xiahui Gui
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen 57076, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yijun Cao
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450066, Henan, China).
| | - Yaowen Xing
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
13
|
Yen TH, Lin CH, Chen YL. Effects of Gas Adsorption and Surface Conditions on Interfacial Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2759-2770. [PMID: 33595315 DOI: 10.1021/acs.langmuir.0c03511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas aggregation and formation of interfacial nanobubbles (INBs) provide challenges and opportunities in the operation of micro-/nanofluidic devices. In the current study, we used molecular dynamics(MD) simulations to investigate the effects of hydrophobicity and various homogeneous surface conditions on gas aggregation and INB stability with a series of 3D argon-water-solid and water-solid systems. Among various signatures of surface hydrophobicity, the potential of mean force (PMF) minima exhibited the strongest correlation with the water molecular orientation at the liquid-solid interface, compared to the depletion layer width and the droplet contact angle. Our results indicated that argon aggregation on the substrate was a function of hydrophobicity as well as competition between gas-solid and water-solid PMFs. Thus, one precondition for gas aggregation on a surface is that the free energy minima of gas induced by the surface be much lower than that induced by water. We found that although the presence of gas molecules had little effect on the measures of wettability, it enhanced density fluctuations near liquid-solid interfaces. The PMF of gas along the surface tangential plane exhibited a small energy barrier between the epitaxial gas layer (EGL) in the bubble and the gas enrichment layer (GEL) in the liquid, which may benefit nanobubble stability. Much lower PMF in the EGL compared to that in the GEL indicated that gas molecules could migrate from the GEL to the nanobubble basement. However, density fluctuations enhanced by the GEL could reduce the energy barrier, thus reducing the stability of INBs.
Collapse
Affiliation(s)
- Tsu-Hsu Yen
- Department of Marine Science, ROC Naval Academy, Zuoying, Kaohsiung, Taiwan, ROC
| | - Chia-He Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yeng-Long Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, 300027 Taiwan, ROC
- Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
14
|
Shi X, Xue S, Marhaba T, Zhang W. Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2514-2522. [PMID: 33538170 DOI: 10.1021/acs.langmuir.0c03574] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanobubbles (NBs) in liquid exhibit many intriguing properties such as low buoyancy and high mass transfer efficiency and reactivity as compared to large bulk bubbles. However, it remains elusive why or how bulk NBs are stabilized in water, and particularly, the states of internal pressures of NBs are difficult to measure due to the lack of proper methodologies or instruments. This study employed the injection of high-pressure gases through a hydrophobized ceramic membrane to produce different gaseous NBs (e.g., N2, O2, H2, and CO2) in water, which is different from cavitation bubbles with potential internal low pressure and noncondensed gases. The results indicate that increasing the injection gas pressure (60-80 psi) and solution temperatures (6-40 °C) both reduced bubble sizes from approximately 400 to 200 nm, which are validated by two independent models developed from the Young-Laplace equation and contact mechanics. Particularly, the colloidal force model can explain the effects of surface tension and surface charge repulsion on bubble sizes and internal pressures. The contact mechanics model incorporates the measurement of the tip-bubble interaction forces by atomic force microscopy to determine the internal pressures and the hardness of NBs (e.g., Young's modulus). Both the colloidal force balance model and our contact mechanics model yielded consistent predictions of the internal pressures of various NBs (120-240 psi). The developed methods and model framework will be useful to unravel properties of NBs and support engineering applications of NBs (e.g., aeration or ozonation). Finally, the bulk NBs under sealed storage could be stable for around a week and progressively reduce in concentrations over the next 30-60 days.
Collapse
Affiliation(s)
- Xiaonan Shi
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Shan Xue
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Taha Marhaba
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
15
|
Nag S, Tomo Y, Takahashi K, Kohno M. Mechanistic Insights into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:874-881. [PMID: 33400870 DOI: 10.1021/acs.langmuir.0c03208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanobubbles have attracted great interest in recent times because of their application in water treatment, surface cleaning, and targeted drug delivery, yet the challenge remains to gain thorough understanding of their unique behavior and dynamics for their utilization in numerous potential applications. In this work, we have used a liquid-phase electron microscopy technique to gain insights into the quasistatic merging of surface nanobubbles. The electron beam environment was controlled in order to suppress any new nucleation and slow down the merging process. The transmission electron microscopy study reveals that merging of closely positioned surface nanobubbles is initiated by gradual localized changes in the physical properties of the region between the adjoining nanobubble boundary. The observed phenomenon is then analyzed and discussed based on the different perceptions: localized liquid density gradient and bridge formation for gas exchange. In this study, it is estimated that the merging of the stable nanobubbles is initiated by the formation of a thin gas layer. This work not only enhances our understanding of the merging process of stable surface nanobubbles but will also lead to exploration of new domains for nanobubble applications.
Collapse
Affiliation(s)
- Sarthak Nag
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Yoko Tomo
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Masamichi Kohno
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Tortora M, Meloni S, Tan BH, Giacomello A, Ohl CD, Casciola CM. The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. NANOSCALE 2020; 12:22698-22709. [PMID: 33169778 DOI: 10.1039/d0nr05859a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface nanobubbles are gaseous domains found at immersed substrates, whose remarkable persistence is still not fully understood. Recently, it has been observed that the formation of nanobubbles is often associated with a local high gas oversaturation at the liquid-solid interface. Tan, An and Ohl have postulated the existence of an effective potential attracting the dissolved gas to the substrate and producing a local oversaturation within 1 nm from it that can stabilize nanobubbles by preventing outgassing in the region where gas flow would be maximum. It is this effective solid-gas potential - which is not the intrinsic, mechanical interaction between solid and gas atoms - its dependence on chemical and physical characteristics of the substrate, gas and liquid, that controls the stability and the other characteristics of surface nanobubbles. Here, we perform free energy atomistic calculations to determine, for the first time, the effective solid-gas interaction that allows us to identify the molecular origin of the stability and other properties of surface nanobubbles. By combining the Tan-An-Ohl model and the present results, we provide a comprehensive theoretical framework allowing, among others, the interpretation of recent unexplained experimental results, such as the stability of surface nanobubbles in degassed liquids, the very high gas concentration in the liquid surrounding nanobubbles, and nanobubble instability in organic solvents with high gas solubility.
Collapse
Affiliation(s)
- Marco Tortora
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Yen TH. Influence of gas aggregation on water-solid interface: molecular simulation. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tsu-Hsu Yen
- Department of Marine Science, R.O.C. Naval Academy, Kaohsiung, Taiwan, Republic of China (R.O.C.)
| |
Collapse
|
18
|
Zhang F, Gui X, Xing Y, Cao Y, Che T. Study of Interactions between Interfacial Nanobubbles and Probes of Different Hydrophobicities. ACS OMEGA 2020; 5:20363-20372. [PMID: 32832789 PMCID: PMC7439380 DOI: 10.1021/acsomega.0c02327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/23/2020] [Indexed: 05/17/2023]
Abstract
In this study, hydrophilic, medium hydrophobic, and strong hydrophobic probes are obtained via treatment with plasma and octadecyl trichlorosilane. The interaction between the probes and interfacial nanobubbles (INBs) is examined using atomic force microscopy. The results show that a hydrophilic probe can scan the true shape of the INBs, and the distance between the first inflection point and the zero point of the approach force curve is equal to the vertical height of the nanobubble. The medium hydrophobic probe caused severe deformation of INB morphologies in the horizontal direction during scanning; nevertheless, the complete shape of the INB is obtained using this probe by lowering the scanning parameters. However, the characteristic of the approach force curve proves that the size of the nanobubbles is underestimated. The strong hydrophobic probe deforms INB morphologies severely, whose size cannot be obtained. The maximum attractive force in the approach force curve and the adhesive force in the retract force curve obtained using the strong hydrophobic probe are approximately 6 and 12 nN, respectively, which are both higher than those of the hydrophilic and medium hydrophobic probes. It is reasoned that the liquid film is maintained between the hydrophilic probe and the INBs, the medium hydrophobic probe pierces the INBs slightly, while the strong hydrophobic probe punctures the liquid film and demonstrates a pinning effect.
Collapse
Affiliation(s)
- Fanfan Zhang
- School of Chemical
Engineering and Technology, China University
of Mining and Technology, No. 1 Daxue Road, Tongshan District, Xuzhou, Jiangsu 221116, China
| | - Xiahui Gui
- Chinese National Engineering Research Center
of Coal Preparation and Purification, China
University of Mining and Technology, No. 1 Daxue Road, Tongshan District, Xuzhou, Jiangsu 221116, China
| | - Yaowen Xing
- Chinese National Engineering Research Center
of Coal Preparation and Purification, China
University of Mining and Technology, No. 1 Daxue Road, Tongshan District, Xuzhou, Jiangsu 221116, China
| | - Yijun Cao
- Chinese National Engineering Research Center
of Coal Preparation and Purification, China
University of Mining and Technology, No. 1 Daxue Road, Tongshan District, Xuzhou, Jiangsu 221116, China
| | - Tao Che
- Yanzhou Coal Mining Company Limited, 98 Fushan South Road, Zoucheng, Shandong 273500, China
| |
Collapse
|
19
|
Liu Y, Bernardi S, Widmer-Cooper A. Stability of pinned surface nanobubbles against expansion: Insights from theory and simulation. J Chem Phys 2020; 153:024704. [PMID: 32668938 DOI: 10.1063/5.0013223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While growth and dissolution of surface nanobubbles have been widely studied in recent years, their stability under pressure changes or a temperature increase has not received the same level of scrutiny. Here, we present theoretical predictions based on classical theory for pressure and temperature thresholds (pc and Tc) at which unstable growth occurs for the case of air nanobubbles on a solid surface in water. We show that bubbles subjected to pinning have much lower pc and higher Tc compared to both unpinned and bulk bubbles of similar size, indicating that pinned bubbles can withstand a larger tensile stress (negative pressure) and higher temperatures. The values of pc and Tc obtained from many-body dissipative particle dynamics simulations of quasi-two-dimensional (quasi-2D) surface nanobubbles are consistent with the theoretical predictions, provided that the lateral expansion during growth is taken into account. This suggests that the modified classical thermodynamic description is valid for pinned bubbles as small as several nanometers. While some discrepancies still exist between our theoretical results and previous experiments, further experimental data are needed before a comprehensive understanding of the stability of surface nanobubbles can be achieved.
Collapse
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stefano Bernardi
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Teshima H, Li QY, Takata Y, Takahashi K. Gas molecules sandwiched in hydration layers at graphite/water interfaces. Phys Chem Chem Phys 2020; 22:13629-13636. [DOI: 10.1039/d0cp01719a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Frequency shift-distance curves reveal that each adsorbed gas layer is sandwiched between hydration layers with high water density.
Collapse
Affiliation(s)
- Hideaki Teshima
- Department of Aeronautics and Astronautics
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
| | - Yasuyuki Takata
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Mechanical Engineering
| | - Koji Takahashi
- Department of Aeronautics and Astronautics
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
| |
Collapse
|
21
|
Theodorakis PE, Che Z. Surface nanobubbles: Theory, simulation, and experiment. A review. Adv Colloid Interface Sci 2019; 272:101995. [PMID: 31394435 DOI: 10.1016/j.cis.2019.101995] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023]
Abstract
Surface nanobubbles (NBs) are stable gaseous phases in liquids that form at the interface with solid substrates. They have been particularly intriguing for their high stability that contradicts theoretical expectations and their potential relevance for many technological applications. Here, we present the current state of the art in this research area by discussing and contrasting main results obtained from theory, simulation and experiment, and presenting their limitations. We also provide future perspectives anticipating that this review will stimulate further studies in the research area of surface NBs.
Collapse
|
22
|
Li D, Qi L, Liu Y, Bhushan B, Gu J, Dong J. Study on the Formation and Properties of Trapped Nanobubbles and Surface Nanobubbles by Spontaneous and Temperature Difference Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12035-12041. [PMID: 31424216 DOI: 10.1021/acs.langmuir.9b02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trapped nanobubbles are gas domains trapped at nanopits on the solid-liquid interface. This is different from surface nanobubbles that usually form at the smooth surface. Herein, both trapped nanobubbles and surface nanobubbles formed on the nanopitted polystyrene film were studied by a spontaneous formation method and a temperature difference method. Trapped nanobubbles behave more flexibly than surface nanobubbles under different scanning loads. The nanopits under trapped nanobubbles appear after being subjected to large force scanning, and both trapped nanobubbles and surface nanobubbles can recover after reducing the scan load. The contact angles of the two kinds of nanobubbles were calculated and were found to be approximately constant. Configurations of trapped nanobubbles including under the pit mouth, protruding out but pinning at the pit mouth, and protruding out and extending around the pit mouth were experimentally observed. Gas oversaturation in the liquid after replacing the low-temperature water with high-temperature water was evaluated and was found to be a key factor for nanobubble formation and led to trapped nanobubbles protruding out and extending. Our study should be helpful in understanding the formation mechanism and properties of trapped nanobubbles and surface nanobubbles, and it will also be useful for further research on the control of nanobubble distribution.
Collapse
Affiliation(s)
- Dayong Li
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) , The Ohio State University , 201 W. 19th Avenue , Columbus , Ohio 43210-1142 , United States
| | | | | | - Bharat Bhushan
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) , The Ohio State University , 201 W. 19th Avenue , Columbus , Ohio 43210-1142 , United States
| | | | | |
Collapse
|