1
|
An Y, Ji C, Zhang H, Jiang Q, Maitz MF, Pan J, Luo R, Wang Y. Engineered Cell Membrane Coating Technologies for Biomedical Applications: From Nanoscale to Macroscale. ACS NANO 2025; 19:11517-11546. [PMID: 40126356 DOI: 10.1021/acsnano.4c16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cell membrane coating has emerged as a promising strategy for the surface modification of biomaterials with biological membranes, serving as a cloak that can carry more functions. The cloaked biomaterials inherit diverse intrinsic biofunctions derived from different cell sources, including enhanced biocompatibility, immunity evasion, specific targeting capacity, and immune regulation of the regenerative microenvironment. The intrinsic characteristics of biomimicry and biointerfacing have demonstrated the versatility of cell membrane coating technology on a variety of biomaterials, thus, furthering the research into a wide range of biomedical applications and clinical translation. Here, the preparation of cell membrane coatings is emphasized, and different sizes of coated biomaterials from nanoscale to macroscale as well as the engineering strategies to introduce additional biofunctions are summarized. Subsequently, the utilization of biomimetic membrane-cloaked biomaterials in biomedical applications is discussed, including drug delivery, imaging and phototherapy, cancer immunotherapy, anti-infection and detoxification, and implant modification. In conclusion, the latest advancements in clinical and preclinical studies, along with the multiple benefits of cell membrane-coated nanoparticles (NPs) in biomimetic systems, are elucidated.
Collapse
Affiliation(s)
- Yongqi An
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Junqiang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu, 610065, China
| |
Collapse
|
2
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Yu W, Wei C, Zhang K, Zhang J, Ge Z, Liang X, Guiver MD, Ge X, Wu L, Xu T. Host-Guest Recognition Boosts Biomimetic Mono/Multivalent Cation Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5861-5871. [PMID: 36988386 DOI: 10.1021/acs.est.2c09733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biomimetic ion permselective membranes with ultrahigh ion permeability and selectivity represent a research frontier in ion separation, yet the successful fabrication of such membranes remains a formidable challenge. Here, we demonstrate a 4-sulfocalix[4]arene (4-SCA)-modified graphene oxide (GO) membrane that shows extraordinary performance in separating mono-from multivalent cations, as well as having reversible pH-responsiveness. The resulting 4-SCA-modified GO (SCA-GO) membrane preferentially transports potassium ions (K+) over radionuclide cations (Co2+, UO22+, La3+, Eu3+, and Th4+). The ion selectivities are an order of magnitude higher than that of the unmodified GO membrane. Theoretical calculations and experimental investigations demonstrate that the much-improved ion selectivity arises from the specific recognition between 4-SCA and radionuclide cations. The transport of multivalent radionuclides is impeded by a binding-obstructing mechanism from the host-guest interactions. Interestingly, the host-guest interactions are responsive to the protonation/deprotonation transformation of the 4-SCA. Therefore, the SCA-GO membrane mimics pH-regulated ion selective behavior found in biological ion channels. Our strategy of designing a biomimetic permselective GO membrane may allow efficient nuclear wastewater treatment and, more importantly, deepen our understanding of biomimetic ion transport mechanisms.
Collapse
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Chengpeng Wei
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Jianjun Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Song W, Kumar M. Beyond Aquaporins: Recent Developments in Artificial Water Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9085-9091. [PMID: 35862878 DOI: 10.1021/acs.langmuir.2c01605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A molecular scale understanding of the fast and selective water transport in biological water channels, aquaporins (AQPs), has inspired attempts to mimic its performance in synthetic structures. These synthetic structures, referred to as artificial water channels (AWCs), present several advantages over AQPs in applications. After over a decade of efforts, the unique transport properties of AQPs have been reproduced in AWCs. Further, recent developments have shown that the performance of benchmark AQP channels can be exceeded by new AWC designs using novel features not seen in biology. In this Perspective, we provide a brief overview of recent AWC developments, and share our perspective on forward-looking AWC research.
Collapse
Affiliation(s)
- Woochul Song
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
6
|
Wachlmayr J, Hannesschlaeger C, Speletz A, Barta T, Eckerstorfer A, Siligan C, Horner A. Scattering versus fluorescence self-quenching: more than a question of faith for the quantification of water flux in large unilamellar vesicles? NANOSCALE ADVANCES 2021; 4:58-76. [PMID: 35028506 PMCID: PMC8691418 DOI: 10.1039/d1na00577d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The endeavors to understand the determinants of water permeation through membrane channels, the effect of the lipid or polymer membrane on channel function, the development of specific water flow inhibitors, the design of artificial water channels and aquaporins for the use in industrial water filtration applications all rely on accurate ways to quantify water permeabilities (P f). A commonly used method is to reconstitute membrane channels into large unilamellar vesicles (LUVs) and to subject these vesicles to an osmotic gradient in a stopped-flow device. Fast recordings of either scattered light intensity or fluorescence self-quenching signals are taken as a readout for vesicle volume change, which in turn can be recalculated to accurate P f values. By means of computational and experimental data, we discuss the pros and cons of using scattering versus self-quenching experiments or subjecting vesicles to hypo- or hyperosmotic conditions. In addition, we explicate for the first time the influence of the LUVs size distribution, channel distribution between vesicles and remaining detergent after protein reconstitution on P f values. We point out that results such as the single channel water permeability (p f) depend on the membrane matrix or on the direction of the applied osmotic gradient may be direct results of the measurement and analysis procedure.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | | | - Armin Speletz
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Anna Eckerstorfer
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| |
Collapse
|
7
|
|
8
|
Tu YM, Samineni L, Ren T, Schantz AB, Song W, Sharma S, Kumar M. Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Tu YM, Song W, Ren T, Shen YX, Chowdhury R, Rajapaksha P, Culp TE, Samineni L, Lang C, Thokkadam A, Carson D, Dai Y, Mukthar A, Zhang M, Parshin A, Sloand JN, Medina SH, Grzelakowski M, Bhattacharya D, Phillip WA, Gomez ED, Hickey RJ, Wei Y, Kumar M. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. NATURE MATERIALS 2020; 19:347-354. [PMID: 31988513 DOI: 10.1038/s41563-019-0577-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of β-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20-1,000 times greater than that of commercial membranes and 1.5-45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range.
Collapse
Affiliation(s)
- Yu-Ming Tu
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Woochul Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Tingwei Ren
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yue-Xiao Shen
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Tyler E Culp
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Laxmicharan Samineni
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chao Lang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Alina Thokkadam
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Drew Carson
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yuxuan Dai
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Arwa Mukthar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Miaoci Zhang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Janna N Sloand
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Dibakar Bhattacharya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - William A Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Yinai Wei
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.
- Materials Research Institute, Pennsylvania State University, University Park, PA, USA.
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA.
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Song W, Joshi H, Chowdhury R, Najem JS, Shen YX, Lang C, Henderson CB, Tu YM, Farell M, Pitz ME, Maranas CD, Cremer PS, Hickey RJ, Sarles SA, Hou JL, Aksimentiev A, Kumar M. Artificial water channels enable fast and selective water permeation through water-wire networks. NATURE NANOTECHNOLOGY 2020; 15:73-79. [PMID: 31844288 PMCID: PMC7008941 DOI: 10.1038/s41565-019-0586-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/04/2019] [Indexed: 05/09/2023]
Abstract
Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.
Collapse
Affiliation(s)
- Woochul Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Joseph S Najem
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
- Department of Mechanical Engineering, The Pennsylvania State University, UniversityPark, PA, USA
| | - Yue-Xiao Shen
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chao Lang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Codey B Henderson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Megan Farell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Megan E Pitz
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Metal-coordinated sub-10 nm membranes for water purification. Nat Commun 2019; 10:4160. [PMID: 31519877 PMCID: PMC6744495 DOI: 10.1038/s41467-019-12100-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/21/2019] [Indexed: 01/31/2023] Open
Abstract
Ultrathin membranes with potentially high permeability are urgently demanded in water purification. However, their facile, controllable fabrication remains a grand challenge. Herein, we demonstrate a metal-coordinated approach towards defect-free and robust membranes with sub-10 nm thickness. Phytic acid, a natural strong electron donor, is assembled with metal ion-based electron acceptors to fabricate metal-organophosphate membranes (MOPMs) in aqueous solution. Metal ions with higher binding energy or ionization potential such as Fe3+ and Zr4+ can generate defect-free structure while MOPM-Fe3+ with superhydrophilicity is preferred. The membrane thickness is minimized to 8 nm by varying the ligand concentration and the pore structure of MOPM-Fe3+ is regulated by varying the Fe3+ content. The membrane with optimized MOPM-Fe3+ composition exhibits prominent water permeance (109.8 L m−2 h−1 bar−1) with dye rejections above 95% and superior stability. This strong-coordination assembly may enlighten the development of ultrathin high-performance membranes. Ultrathin membranes have demonstrated great promise for water purification technologies owing to their high permeance. Here the authors fabricate sub-10 nm, defect-free, robust membranes for dye remediation from water through the coordination-driven assembly of metal-organophosphates.
Collapse
|
12
|
|