1
|
Takayanagi S, Sugahara Y, Guégan R. Enhanced Electrochemical Performances of Heterostructures Based on the Colloidal Association of Graphene Oxide and Titanium Disulfide Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133079 DOI: 10.1021/acs.langmuir.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Due to the large proliferation of electrical devices combined with the ecological transition for carbon neutrality in various modern countries, the demand for compact and efficient portable energy sources is continuously increasing. In this research work, we have developed electrochemical energy storage heterostructures based on graphene oxides (GOs) and titanium disulfide (TiS2) nanosheets of different lateral sizes through a facile colloidal association thanks to the opposite electric charges of the two types of nanosheets. Large GO (LGO) served as a template system to organize TiS2 nanosheets at different loadings, of which incorporation prevented any restacking of the layered graphitic structure. While large nanosheets led to the decoration of TiS2 aggregates including Li+ cations on LGO, the association of the nanosheets of different compositions but equivalent sizes drove the formation of an interstratified organization of the nanosheets. The singular organization within GO and TiS2 nanosheets remained after a hydrothermal reduction process, leading to heterostructure materials with a large specific surface area and capacitance of 113 F/g obtained in 6 M KOH aqueous solution. These outstanding electrochemical performances, drastically enhanced by about 41% from those of the individual reduced GO (capacitance of 80 F/g) used as a collector for the electric carriers, suggest that the developed heterostructures present a possible application as electrochemical energy storage technology materials for supercapacitor applications.
Collapse
Affiliation(s)
- Seira Takayanagi
- Department of Applied Chemistry, Waseda University, Faculty of Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University, Faculty of Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Régis Guégan
- Kagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
- Interfaces, Confinement, Matériaux et Nanostructures ICMN-UMR 737, CNRS-Université d'Orléans, 1b Rue de la Férollerie, Orléans 45100, France
| |
Collapse
|
2
|
Rajeeve AD, Yamuna R, Vinoba M, Bhagiyalakshmi M. β-Cyclodextrin-Stabilized CuO/MXene Nanocomposite as an Electrode Material for High-Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38014812 DOI: 10.1021/acs.langmuir.3c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Supercapacitors are the best energy storage systems due to their high power density, quick charge/discharge rate, and long-term reliability. In this study, β-cyclodextrin-stabilized CuO nanoparticles (CuO@βCD NPs) were synthesized through a simple reduction method and anchored on the surface of MXene nanosheets in three different proportions (1:1, 4:1, and 1:4) to obtain CuO@βCD/MXene nanocomposites through the wet-impregnation method. The formation of CuO@βCD NPs and their physicochemical characteristics were verified by XRD, XPS, FE-SEM, and HR-TEM analysis. The actual focus is on the evaluation of the electrochemical performances of CuO@βCD, MXene, and CuO@βCD/MXene nanocomposites for supercapacitor applications. The cyclic voltammetry and galvanostatic charge-discharge analysis revealed the pseudocapacitance and an improved specific capacitance of 1693.43 F g-1 at 0.90 A g-1 for the CuO@βCD/MXene (1:1) nanocomposite. The electrochemical impedance analysis displays superior electrical conductivity with a low charge transfer resistance value on incorporating CuO@βCD between the MXene layers. Furthermore, the CuO@βCD/MXene (1:1) nanocomposite exhibited improved long-term cycling stability by retaining 86% of its initial specific capacitance even after the 10,000th cycle at the current density of 4.54 A g-1. Based on the electrochemical performance, the CuO@βCD/MXene (1:1) nanocomposite proves its suitability as an electrode material for supercapacitor application with long-term cycling stability and rate capability.
Collapse
Affiliation(s)
- Anakha D Rajeeve
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Ramasamy Yamuna
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Mari Vinoba
- Petroleum Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | | |
Collapse
|
3
|
Bhosale R, Bhosale S, Narale D, Jambhale C, Kolekar S. Construction of Well-Defined Two-Dimensional Architectures of Trimetallic Metal-Organic Frameworks for High-Performance Symmetric Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12075-12089. [PMID: 37578309 DOI: 10.1021/acs.langmuir.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The high surface-to-volume ratio and extraordinarily large-surface area of two-dimensional (2D) metal-organic framework (MOF) architectures have drawn particular interest for use in supercapacitors. To achieve an excellent electrode material for supercapacitors, well-defined 2D nanostructures of novel trimetallic MOFs were developed for supercapacitor applications. Multivariate MOFs (terephthalate and trimesate MOF) with distinctive nanobrick and nanoplate-like structures were successfully synthesized using a straightforward one-step reflux condensation method by combining Ni, Co, and Zn metal species in equimolar ratios with two different ligands. Furthermore, the effects of the tricarboxylic and dicarboxylic ligands on cyclic voltammetry, charge-discharge cycling, and electrochemical impedance spectroscopy were studied. The derived terephthalate and trimesate MOFs are supported with stainless-steel mesh and provide a suitable electrolyte environment for rapid faradaic reactions with an elevated specific capacity, excellent rate capability, and exceptional cycling stability. It shows a specific capacitance of 582.8 F g-1, a good energy density of 40.47 W h kg-1, and a power density of 687.5 W kg-1 at 5 mA cm-2 with an excellent cyclic stability of 92.44% for 3000 charge-discharge cycles. A symmetric BDC-MOF//BDC-MOF supercapacitor device shows a specific capacitance of 95.22 F g-1 with low capacitance decay, high energy, and power densities which is used for electronic applications. These brand-new trimetallic MOFs display outstanding electrochemical performance and provide a novel strategy for systematically developing high-efficiency energy storage systems.
Collapse
Affiliation(s)
- Rakhee Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Sneha Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Dattatray Narale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Chitra Jambhale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Sanjay Kolekar
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| |
Collapse
|
4
|
Quispe-Garrido LV, Monje IE, López EO, Gonçalves JM, Martins CS, Planes GÁ, Ruiz-Montoya JG, Baena-Moncada AM. Influence of the Molar Ratio of Co and V in Bimetallic Oxides on Their Pseudocapacitive Properties. ACS OMEGA 2022; 7:43522-43530. [PMID: 36506126 PMCID: PMC9730493 DOI: 10.1021/acsomega.2c04126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Bimetallic oxides have significant attraction as supercapacitor electrode materials due to their highly reversible redox processes, which are commonly associated with their surface chemistry and morphological features. Here, we report the synthesis, characterization, and electrochemical evaluation of bimetallic oxides with different molar compositions of Co and V (Co0.6V0.4, Co0.64V0.36, Co0.68V0.32, and Co0.7V0.3 denoted as S1, S2, S3, and S4 samples, respectively). The materials were synthesized by a modified solvothermal method using glycerol as a stabilizing agent, characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, N2 adsorption isotherms, cyclic voltammetry, and galvanostatic charged/discharged in a three-electrode cell. The role of the CoV oxide compositions on the pseudocapacitive properties was studied through the analysis of the energy storage mechanism following the power law and Dunn's methodology to obtain the b values. An important finding of this work is that CoV oxides exhibited electrochemical characteristics of a pseudocapacitive electrode material even though the charge storage occurs in bulk. This behavior is consistent with the pseudocapacitance generated by redox processes, showing b values of 0.67, 0.53, 0.75, and 0.84, with a capacitive current contribution of 74, 74, 63, and 70% analyzed at a scan rate of 1 mV s-1, for S4, S3, S2, and S1 samples, respectively. Co0.7V0.3 (S4) oxide presented the highest specific capacitance of 299 F g-1 at 0.5 A g-1 with a Coulombic efficiency of 93% tested at 4 A g-1. The better electrochemical performance of this sample was attributed to the synergistic effect of the Co and V atoms since a minimum amount of V in the structure may distort the crystal lattice and improve the electrolyte diffusion, in addition to the formation of several oxidation states due to reduction of V5+, including V3+ and V4+ as well as to the formation of the metastable V4O9.
Collapse
Affiliation(s)
- Lady V. Quispe-Garrido
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Ivonne E. Monje
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Elvis O. López
- Department
of Experimental Low Energy Physics, Brazilian
Center for Research in Physics (CBPF), Rio de Janeiro 22290-180, Brazil
| | - Josué M. Gonçalves
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil
| | - Cleonice S. Martins
- Department
of Experimental Low Energy Physics, Brazilian
Center for Research in Physics (CBPF), Rio de Janeiro 22290-180, Brazil
| | - Gabriel Ángel Planes
- Instituto
de Investigación en Tecnologías Energéticas y
Materiales Avanzados (IITEMA), CONICET, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina
| | - José G. Ruiz-Montoya
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Angélica Maria Baena-Moncada
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| |
Collapse
|
5
|
Zhao X, Li H, Zhang M, Pan W, Luo Z, Sun X. Hierarchical Nanocages Assembled by NiCo-Layered Double Hydroxide Nanosheets for a High-Performance Hybrid Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34781-34792. [PMID: 35867900 DOI: 10.1021/acsami.2c08903] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered double hydroxides (LDHs) have attracted broad attention as cathode materials for hybrid supercapacitors (HSCs) because of their ultrahigh theoretical specific capacitance, high compositional flexibility, and adjustable interlayer spacing. However, as reported, specific capacitance of LDHs is still far below the theoretical value, inspiring countless efforts to these ongoing challenges. Herein, a hierarchical nanocage structure assembled by NiCo-LDH nanosheet arrays was rationally designed and fabricated via a facile solvothermal method assisted by the ZIF-67 template. The transformation from the ZIF-67 template to this hollow structure is achieved by a synergistic effect involving the Kirkendall effect and the Ostwald ripening process. The enlarged specific surface area co-occurred with broadened interlayer spacing of LDH nanosheets by finely increasing the Ni concentration, leading to synchronous improvement of electron/ion transfer kinetics. The optimized NiCo-LDH-210 electrode displays a maximum specific capacitance of 2203.6 F g-1 at 2 A g-1, excellent rate capability, and satisfactory cycling stability because of the highly exposed active sites and shortened ion transport paths provided by vertically aligned LDH nanosheets together with the cavity. Furthermore, the assembled HSC device achieves a superior energy density of 57.3 Wh kg-1 with prominent cycling stability. Impressively, the design concept of complex construction derived from metal-organic frameworks (MOF) derivatives shows tremendous potential for use in energy storage systems.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Hui Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| | - Wei Pan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| |
Collapse
|
6
|
Yesuraj J, Vajravijayan S, Yang R, Nandhagopal N, Gunasekaran K, Selvam NCS, Yoo PJ, Kim K. Self-Assembly of Hausmannite Mn 3O 4 Triangular Structures on Cocosin Protein Scaffolds for High Energy Density Symmetric Supercapacitor Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2928-2941. [PMID: 35213159 DOI: 10.1021/acs.langmuir.1c03400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in using biological scaffolds for nanoparticle synthesis have proven to be useful for preparing various nanostructures with uniform shape and size. Proteins are significant scaffolds for generating various nanostructures partly because of the presence of many functional groups to recognize different chemistries. In this endeavor, cocosin protein, an 11S allergen, is prepared from coconut fruit and employed as a potential scaffold for synthesizing Mn3O4 materials. The interaction between protein and manganese ions is studied in detail through isothermal calorimetric titration. At increased scaffold availability, the Mn3O4 material adopts the exact hexamer structure of the cocosin protein. The electrochemical supercapacitive properties of the cocosin-Mn3O4 material are found to have a high specific capacitance of 751.3 F g-1 at 1 A g-1 with cyclic stability (92% of capacitance retention after 5000 CV cycles) in a three-electrode configuration. The Mn3O4//Mn3O4 symmetric supercapacitor device delivers a specific capacitance of 203.8 F g-1 at 1 A g-1 and an outstanding energy and power density of 91.7 W h kg-1 and 899.5 W kg-1, respectively. These results show that cocosin-Mn3O4 could be considered a suitable electrode for energy storage applications. Moreover, the cocosin protein to be utilized as a novel scaffold in protein-nanomaterial chemistry could be useful for protein-assisted inorganic nanostructure synthesis in the future.
Collapse
Affiliation(s)
- Johnbosco Yesuraj
- Department of Mechanical Engineering, Chungbuk National University, Cheongju 28644, South Korea
| | - Senthilvadivel Vajravijayan
- Department of Crop Improvement (Plant Biochemistry), Don Bosco College of Agriculture (DBCA), Sagayathottam, Takkolam, Tamil Nadu, India 631151
| | - Rui Yang
- Department of Mechanical Engineering, Chungbuk National University, Cheongju 28644, South Korea
| | - Narayanasamy Nandhagopal
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Krishnasamy Gunasekaran
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - N Clament Sagaya Selvam
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kibum Kim
- Department of Mechanical Engineering, Chungbuk National University, Cheongju 28644, South Korea
| |
Collapse
|
7
|
Ezhov IS, Nazarov DV, Vishnyakov PS, Koshtyal YM, Rumyantsev AM, Kumar R, Popovich AA, Maksimov MY. Use of Equivalent Reactant Feeding in Deposition of Ni–Mn–O Coatings by Molecular Layering. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s107042722203003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Laser-Induced Interdigital Structured Graphene Electrodes Based Flexible Micro-Supercapacitor for Efficient Peak Energy Storage. Molecules 2022; 27:molecules27010329. [PMID: 35011558 PMCID: PMC8746467 DOI: 10.3390/molecules27010329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 01/31/2023] Open
Abstract
The rapidly developing demand for lightweight portable electronics has accelerated advanced research on self-powered microsystems (SPMs) for peak power energy storage (ESs). In recent years, there has been, in this regard, a huge research interest in micro-supercapacitors for microelectronics application over micro-batteries due to their advantages of fast charge–discharge rate, high power density and long cycle-life. In this work, the optimization and fabrication of micro-supercapacitors (MSCs) by means of laser-induced interdigital structured graphene electrodes (LIG) has been reported. The flexible and scalable MSCs are fabricated by CO2-laser structuring of polyimide-based Kapton ® HN foils at ambient temperature yielding interdigital LIG-electrodes and using polymer gel electrolyte (PGE) produced by polypropylene carbonate (PPC) embedded ionic liquid of 1-ethyl-3-methyl-imidazolium-trifluoromethansulphonate [EMIM][OTf]. This MSC exhibits a wide stable potential window up to 2.0 V, offering an areal capacitance of 1.75 mF/cm2 at a scan rate of 5.0 mV/s resulting in an energy density (Ea) of 0.256 µWh/cm2 @ 0.03 mA/cm2 and power density (Pa) of 0.11 mW/cm2 @0.1 mA/cm2. Overall electrochemical performance of this LIG/PGE-MSC is rounded with a good cyclic stability up to 10,000 cycles demonstrating its potential in terms of peak energy storage ability compared to the current thin film micro-supercapacitors.
Collapse
|
9
|
Ray A, Saruhan B. Application of Ionic Liquids for Batteries and Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2942. [PMID: 34072536 PMCID: PMC8197857 DOI: 10.3390/ma14112942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Nowadays, the rapid development and demand of high-performance, lightweight, low cost, portable/wearable electronic devices in electrical vehicles, aerospace, medical systems, etc., strongly motivates researchers towards advanced electrochemical energy storage (EES) devices and technologies. The electrolyte is also one of the most significant components of EES devices, such as batteries and supercapacitors. In addition to rapid ion transport and the stable electrochemical performance of electrolytes, great efforts are required to overcome safety issues due to flammability, leakage and thermal instability. A lot of research has already been completed on solid polymer electrolytes, but they are still lagging for practical application. Over the past few decades, ionic liquids (ILs) as electrolytes have been of considerable interest in Li-ion batteries and supercapacitor applications and could be an important way to make breakthroughs for the next-generation EES systems. The high ionic conductivity, low melting point (lower than 100 °C), wide electrochemical potential window (up to 5-6 V vs. Li+/Li), good thermal stability, non-flammability, low volatility due to cation-anion combinations and the promising self-healing ability of ILs make them superior as "green" solvents for industrial EES applications. In this short review, we try to provide an overview of the recent research on ILs electrolytes, their advantages and challenges for next-generation Li-ion battery and supercapacitor applications.
Collapse
Affiliation(s)
| | - Bilge Saruhan
- German Aerospace Center (DLR), Department of High-Temperature and Functional Coatings, Institute of Materials Research, 51147 Cologne, Germany;
| |
Collapse
|
10
|
Katkar PK, Marje SJ, Parale VG, Lokhande CD, Gunjakar JL, Park HH, Patil UM. Fabrication of a High-Performance Hybrid Supercapacitor Based on Hydrothermally Synthesized Highly Stable Cobalt Manganese Phosphate Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5260-5274. [PMID: 33886316 DOI: 10.1021/acs.langmuir.1c00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, cobalt manganese phosphate (H-CMP-series) thin films with different compositions of Co/Mn are prepared on stainless steel (SS) substrate via a facile hydrothermal method and employed as binder-free cathode electrodes in a hybrid supercapacitor. The XRD study reveals a monoclinic crystal structure, and the FE-SEM analysis confirmed that H-CMP-series samples displayed a nano/microarchitecture (microflowers to nanoflakes) on the surface of SS substrate with excess available surfaces and unique sizes. Interestingly, the synergy between cobalt and manganese species in the cobalt manganese phosphate thin film electrode demonstrates a maximum specific capacitance of 571 F g-1 at a 2.2 A g-1 current density in 1 M KOH. Besides, the nano/microstructured cobalt manganese phosphate was able to maintain capacitance retention of 88% over 8000 charge-discharge cycles. More importantly, the aqueous/all-solid-state asymmetric supercapacitor manufactured with the cobalt manganese phosphate thin film as the cathode and reduced graphene oxide (rGO) as the anode displays a high operating potential window of 1.6 V. The aqueous asymmetric device exhibited a maximum specific capacitance of 128 F g-1 at a current density of 1 A g-1 with an energy density of 45.7 Wh kg-1 and a power density of 1.65 kW kg-1. In addition, the all-solid-state asymmetric supercapacitor device provides a high specific capacitance of 37 F g-1 at 1 A g-1 with 13.3 Wh kg-1 energy density and 1.64 kW kg-1 power density in a polymer gel (PVA-KOH) electrolyte. The long cyclic life of both devices (87 and 84%, respectively, after 6000 cycles) and practical demonstration of the solid-state device (lighting of a LED lamp) suggest another alternative choice for cathode materials to develop stable energy storage devices with high energy density. Furthermore, the aforementioned study paves the way to investigate phosphate-based materials as a new class of materials for supercapacitor applicability.
Collapse
Affiliation(s)
- Pranav K Katkar
- Centre for Interdisciplinary Research, D. Y. Education Society (Deemed to be University), Kasaba Bawada, Kolhapur 416 006, Maharashtra, India
| | - Supriya J Marje
- Centre for Interdisciplinary Research, D. Y. Education Society (Deemed to be University), Kasaba Bawada, Kolhapur 416 006, Maharashtra, India
| | - Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Chandrakant D Lokhande
- Centre for Interdisciplinary Research, D. Y. Education Society (Deemed to be University), Kasaba Bawada, Kolhapur 416 006, Maharashtra, India
| | - Jayavant L Gunjakar
- Centre for Interdisciplinary Research, D. Y. Education Society (Deemed to be University), Kasaba Bawada, Kolhapur 416 006, Maharashtra, India
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Umakant M Patil
- Centre for Interdisciplinary Research, D. Y. Education Society (Deemed to be University), Kasaba Bawada, Kolhapur 416 006, Maharashtra, India
| |
Collapse
|
11
|
Ray A, Korkut D, Saruhan B. Efficient Flexible All-Solid Supercapacitors with Direct Sputter-Grown Needle-Like Mn/MnO x@Graphite-Foil Electrodes and PPC-Embedded Ionic Electrolytes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1768. [PMID: 32906762 PMCID: PMC7557606 DOI: 10.3390/nano10091768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Recent critical issues regarding next-generation energy storage systems concern the cost-effective production of lightweight, safe and flexible supercapacitors yielding high performances, such as high energy and power densities as well as a long cycle life. Thus, current research efforts are concentrated on the development of high-performance advance electrode materials with high capacitance and excellent stability and solid electrolytes that confer flexibility and safety features. In this work, emphasis is placed on the binder-free, needle-like nanostructured Mn/MnOx layers grown onto graphite-foil deposited by reactive sputtering technique and to the polymer gel embedded ionic electrolytes, which are to be employed as new flexible pseudocapacitive supercapacitor components. Microstructural, morphological and compositional analysis of the layers has been investigated by X-ray diffractometer (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and X-ray photoelectron spectroscopy (XPS). A flexible lightweight symmetric pouch-cell solid-state supercapacitor device is fabricated by sandwiching a PPC-embedded ionic liquid ethyl-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMIM)(TFSI) polymer gel electrolyte (PGE) between two Mn/MnOx@Graphite-foil electrodes and tested to exhibit promising supercapacitive behaviour with a wide stable electrochemical potential window (up to 2.2 V) and long-cycle stability. This pouch-cell supercapacitor device offers a maximum areal capacitance of 11.71 mF/cm2@ 0.03 mA/cm2 with maximum areal energy density (Ea) of 7.87 mWh/cm2 and areal power density (Pa) of 1099.64 mW/cm2, as well as low resistance, flexibility and good cycling stability. This supercapacitor device is also environmentally safe and could be operated under a relatively wide potential window without significant degradation of capacitance performance compared to other reported values. Overall, these rationally designed flexible symmetric all-solid-state supercapacitors signify a new promising and emerging candidate for component integrated storage of renewable energy harvested current.
Collapse
Affiliation(s)
- Apurba Ray
- Department of High-Temperature and Functional Coatings, Institute of Materials Research, German Aerospace Center (DLR), 51147 Cologne, Germany; (A.R.); (D.K.)
| | - Delale Korkut
- Department of High-Temperature and Functional Coatings, Institute of Materials Research, German Aerospace Center (DLR), 51147 Cologne, Germany; (A.R.); (D.K.)
- Department of Chemistry, RWTH Aachen University, 52062 Aachen, Germany
| | - Bilge Saruhan
- Department of High-Temperature and Functional Coatings, Institute of Materials Research, German Aerospace Center (DLR), 51147 Cologne, Germany; (A.R.); (D.K.)
| |
Collapse
|
12
|
Abstract
The advanced electrochemical properties, such as high energy density, fast charge–discharge rates, excellent cyclic stability, and specific capacitance, make supercapacitor a fascinating electronic device. During recent decades, a significant amount of research has been dedicated to enhancing the electrochemical performance of the supercapacitors through the development of novel electrode materials. In addition to highlighting the charge storage mechanism of the three main categories of supercapacitors, including the electric double-layer capacitors (EDLCs), pseudocapacitors, and the hybrid supercapacitors, this review describes the insights of the recent electrode materials (including, carbon-based materials, metal oxide/hydroxide-based materials, and conducting polymer-based materials, 2D materials). The nanocomposites offer larger SSA, shorter ion/electron diffusion paths, thus improving the specific capacitance of supercapacitors (SCs). Besides, the incorporation of the redox-active small molecules and bio-derived functional groups displayed a significant effect on the electrochemical properties of electrode materials. These advanced properties provide a vast range of potential for the electrode materials to be utilized in different applications such as in wearable/portable/electronic devices such as all-solid-state supercapacitors, transparent/flexible supercapacitors, and asymmetric hybrid supercapacitors.
Collapse
|
13
|
Sun YA, Chen LT, Hsu SY, Hu CC, Tsai DH. Silver Nanoparticles-Decorating Manganese Oxide Hybrid Nanostructures for Supercapacitor Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14203-14212. [PMID: 31596591 DOI: 10.1021/acs.langmuir.9b02409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A facile aerosol-based synthetic approach is demonstrated for the fabrication of silver-manganese oxide (Ag-MnOx) and cetyltrimethylammonium bromide (CTAB)-templated silver-manganese oxide (c-Ag-MnOx) hybrid nanostructures as the positive electrode materials of supercapacitors. Through gas-phase evaporation-induced self-assembly, silver nanoparticles are homogeneously decorated in the hybrid nanostructure to create a conductive path at the interface of the cluster of MnOx crystallites. The utilization of the capacitance of MnOx increases by the addition of Ag nanoparticles (>2 times for Ag-MnOx and ∼1.7 times for c-Ag-MnOx). An optimal specific capacitance is achieved when the concentration of the silver precursor (CAg) is 0.5 wt %, 118 F g-1 for Ag-MnOx, and 154 F g-1 for c-Ag-MnOx at a specific current of 1 A g-1. The enhanced supercapacitive performance by the addition of CTAB at low CAg is attributed to the increased surface area (>19.4%) for electrochemical reactions. The prototype method with mechanistic understanding demonstrated in this study shows promise for the fabrication of a variety of MnOx-based hybrid nanostructures for supercapacitor applications.
Collapse
Affiliation(s)
- Yu-An Sun
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - Li-Ting Chen
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - Sheng-Yaw Hsu
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - Chi-Chang Hu
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| |
Collapse
|