1
|
Lukáš Petrova S, Sincari V, Pavlova E, Pokorný V, Lobaz V, Hrubý M. Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies. ACS POLYMERS AU 2024; 4:331-341. [PMID: 39156556 PMCID: PMC11328328 DOI: 10.1021/acspolymersau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 08/20/2024]
Abstract
This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers-triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and N-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-b-poly(triethylene glycol methacrylate) (PLA-b-PTEGMA), graft pseudothermoresponsive poly[N-(2-hydroxypropyl)] methacrylate-g-polylactide (PHPMA-g-PLA), and graft amphiphilic poly[N-(2-hydroxypropyl)] methacrylamide-g-polylactide (PHPMAA-g-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-b-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-g-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-g-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-b-PTEGMA and PHPMA-g-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| |
Collapse
|
2
|
Jäger E, Černoch P, Vragovic M, Calumby Albuquerque LJ, Sincari V, Heizer T, Jäger A, Kučka J, Janoušková OŠ, Pavlova E, Šefc L, Giacomelli FC. Membrane Permeability and Responsiveness Drive Performance: Linking Structural Features with the Antitumor Effectiveness of Doxorubicin-Loaded Stimuli-Triggered Polymersomes. Biomacromolecules 2024; 25:4192-4202. [PMID: 38917475 PMCID: PMC11238342 DOI: 10.1021/acs.biomac.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Peter Černoch
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Martina Vragovic
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Lindomar Jose Calumby Albuquerque
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo Andre 09280-560, Brazil
| | - Vladimir Sincari
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Tomáš Heizer
- Center
for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Jan Kučka
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | | | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Luděk Šefc
- Center
for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | | |
Collapse
|
3
|
Jäger E, Ilina O, Dölen Y, Valente M, van Dinther EA, Jäger A, Figdor CG, Verdoes M. pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison. Biomacromolecules 2024; 25:1749-1758. [PMID: 38236997 PMCID: PMC10934262 DOI: 10.1021/acs.biomac.3c01235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Olga Ilina
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Yusuf Dölen
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Michael Valente
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Eric A.W. van Dinther
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Carl G. Figdor
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome Membrane Engineering with Active Targeting or Controlled Permeability for Responsive Drug Delivery. Biomacromolecules 2023; 24:4622-4645. [PMID: 37870458 DOI: 10.1021/acs.biomac.3c00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.
Collapse
Affiliation(s)
- Anum Kayani
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Arsalan Raza
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
5
|
Lukáš Petrova S, Sincari V, Konefał R, Pavlova E, Hrubý M, Pokorný V, Jäger E. Microwave Irradiation-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of pH-Responsive Diblock Copolymer Nanoparticles. ACS OMEGA 2022; 7:42711-42722. [PMID: 36467927 PMCID: PMC9713868 DOI: 10.1021/acsomega.2c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.
Collapse
|
6
|
Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In consideration of the issues of drug delivery systems, the artificial vesicle structures composed of block copolymers called polymersomes recently gained considerable attention. The possibility of tuning the mechanical parameter and increasing the scale-up production of polymersomes led to its wide application in healthcare. Bearing in mind the disease condition, the structure and properties of the polymersomes could be tuned to serve the purpose. Furthermore, specific ligands can be incorporated on the vesicular surface to induce smart polymersomes, thus improving targeted delivery. The synthesis method and surface functionalization are the two key aspects that determine the versatility of biological applications as they account for stability, specific targeting, degradability, biocompatibility, and bioavailability. A perfectly aligned polymer vesicle can mimic the cells/organelles and function by avoiding cytotoxicity. This supramolecular structure can carry and deliver payloads of a wide range, including drugs, proteins, and genes, contributing to the construction of next-generation therapeutics. These aspects promote the potential use of such components as a framework to approach damaged tissue while maintaining healthy environments during circulation. Herein, this article concentrates specifically on the drug delivery applications of polymersomes.
Collapse
|
7
|
Iacobazzi RM, Arduino I, Di Fonte R, Lopedota AA, Serratì S, Racaniello G, Bruno V, Laquintana V, Lee BC, Silvestris N, Leonetti F, Denora N, Porcelli L, Azzariti A. Microfluidic-Assisted Preparation of Targeted pH-Responsive Polymeric Micelles Improves Gemcitabine Effectiveness in PDAC: In Vitro Insights. Cancers (Basel) 2021; 14:cancers14010005. [PMID: 35008170 PMCID: PMC8750671 DOI: 10.3390/cancers14010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary This research suggests a new potential therapeutic approach to pancreatic ductal adenocarcinoma to improve drug effectiveness and overcome drug resistance. A double actively targeted gemcitabine delivery system, consisting of polymeric micelles, was developed by microfluidic technique to ensure a narrow size distribution, a good colloidal stability, and drug-encapsulation efficiency for the selective and controlled release of the loaded drug, in response to the pH variations and uPAR expression in tumors. In vitro studies assessed that the release of the drug in the acidic environment was higher than in the neutral one, and that the pH-responsive and uPAR-targeted polymeric micelles enhanced the antitumor properties of gemcitabine in models resembling the pancreatic tumor microenvironment. Abstract Pancreatic ductal adenocarcinoma (PDAC) represents a great challenge to the successful delivery of the anticancer drugs. The intrinsic characteristics of the PDAC microenvironment and drugs resistance make it suitable for therapeutic approaches with stimulus-responsive drug delivery systems (DDSs), such as pH, within the tumor microenvironment (TME). Moreover, the high expression of uPAR in PDAC can be exploited for a drug receptor-mediated active targeting strategy. Here, a pH-responsive and uPAR-targeted Gemcitabine (Gem) DDS, consisting of polymeric micelles (Gem@TpHResMic), was formulated by microfluidic technique to obtain a preparation characterized by a narrow size distribution, good colloidal stability, and high drug-encapsulation efficiency (EE%). The Gem@TpHResMic was able to perform a controlled Gem release in an acidic environment and to selectively target uPAR-expressing tumor cells. The Gem@TpHResMic displayed relevant cellular internalization and greater antitumor properties than free Gem in 2D and 3D models of pancreatic cancer, by generating massive damage to DNA, in terms of H2AX phosphorylation and apoptosis induction. Further investigation into the physiological model of PDAC, obtained by a co-culture of tumor spheroids and cancer-associated fibroblast (CAF), highlighted that the micellar system enhanced the antitumor potential of Gem, and was demonstrated to overcome the TME-dependent drug resistance. In vivo investigation is warranted to consider this new DDS as a new approach to overcome drug resistance in PDAC.
Collapse
Affiliation(s)
- Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Ilaria Arduino
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Angela Assunta Lopedota
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Giuseppe Racaniello
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Viviana Bruno
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Byung-Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea;
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Leonetti
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
- Correspondence: (N.D.); (L.P.); Tel.: +39-0805442767 (N.D.); +39-0805555986 (L.P.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
- Correspondence: (N.D.); (L.P.); Tel.: +39-0805442767 (N.D.); +39-0805555986 (L.P.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
- Laboratory of Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| |
Collapse
|
8
|
Sincari V, Petrova SL, Konefał R, Hruby M, Jäger E. Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Nishimura T, Shishi S, Sasaki Y, Akiyoshi K. Thermoresponsive Polysaccharide Graft Polymer Vesicles with Tunable Size and Structural Memory. J Am Chem Soc 2020; 142:11784-11790. [PMID: 32506909 DOI: 10.1021/jacs.0c02290] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Controlling polymer vesicle size is difficult and a major obstacle for their potential use in biomedical applications, such as drug-delivery carriers and nanoreactors. Herein, we report size-tunable polymer vesicles based on self-assembly of a thermoresponsive amphiphilic graft copolymer. Unilamellar polymer vesicles form upon heating chilled polymer solutions, and vesicle size can be tuned in the range of 40-70 nm by adjusting the initial polymer concentration. Notably, the polymer can reversibly switch between a monomer state and a vesicle state in accordance with a cooling/heating cycle, which changes neither the size nor the size distribution of the vesicles. This lack of change suggests that the polymer memorizes a particular vesicle conformation. Given our vesicles' size tunability and structural memory, our research considerably expands the fundamental and practical scope of thermoresponsive amphiphilic graft copolymers and renders amphiphilic graft copolymers useful tools for synthesizing functional self-assembled materials.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shen Shishi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Jäger E, Sincari V, Albuquerque LJC, Jäger A, Humajova J, Kucka J, Pankrac J, Paral P, Heizer T, Janouskova O, Konefał R, Pavlova E, Sedlacek O, Giacomelli FC, Pouckova P, Sefc L, Stepanek P, Hruby M. Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules 2020; 21:1437-1449. [PMID: 32083473 DOI: 10.1021/acs.biomac.9b01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Jana Humajova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
| | - Jan Kucka
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Jan Pankrac
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Petr Paral
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Tomas Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
11
|
Lebleu C, Rodrigues L, Guigner JM, Brûlet A, Garanger E, Lecommandoux S. Self-Assembly of PEG- b-PTMC Copolymers: Micelles and Polymersomes Size Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13364-13374. [PMID: 31550897 DOI: 10.1021/acs.langmuir.9b02264] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(ethylene glycol)45-b-poly(trimethylene carbonate)n PEG45-b-PTMCn diblock copolymers were synthesized with five different PTMC degrees of polymerization (n = 38, 96, 144, 170, 332) and their self-assembly properties in water were studied using a manual nanoprecipitation procedure. We confirmed that the copolymer's hydrophilic weight fraction (fPEG) is controlling nanoparticles morphology. We determined that the PEG45-b-PTMC96 with fPEG ≈ 17% is the optimal hydrophilic fraction for the stabilization of well-defined unilamellar vesicles with a membrane thickness of δ ≈ 14.6 nm. Maintaining this fraction constant and modulating the overall molar mass of the block copolymers allowed the establishment of a power law of [Formula: see text] which provides a robust correlation between the molar mass of PTMC and vesicles' membrane thickness. Finally, we proved that controlling nanoprecipitation's conditions by microfluidics allowed fine-tuning and control of the nanoparticles size and polydispersity index while maintaining their shape with a perfect batch-to-batch reproducibility.
Collapse
Affiliation(s)
- Coralie Lebleu
- Université Bordeaux, CNRS , Bordeaux INP, LCPO, UMR 5629 , F-33600 , Pessac , France
| | - Laura Rodrigues
- Université Bordeaux, CNRS , Bordeaux INP, LCPO, UMR 5629 , F-33600 , Pessac , France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) , Sorbonne Universités, IRD, CNRS UMR 7590, MNHN , 75252 Paris Cedex 05 , France
| | - Annie Brûlet
- Laboratoire Léon Brillouin (LLB) , CEA-Saclay, CNRS UMR 12 , 91191 Gif-sur-Yvette Cedex , France
| | - Elisabeth Garanger
- Université Bordeaux, CNRS , Bordeaux INP, LCPO, UMR 5629 , F-33600 , Pessac , France
| | | |
Collapse
|