1
|
Mondal R, Afzal M, Sepay N. Understanding the binding mechanisms of hydroxy-chalcone-based 24-membered macrocyclic bis-epoxide with beta-lactoglobulin. Int J Biol Macromol 2025; 286:138130. [PMID: 39626813 DOI: 10.1016/j.ijbiomac.2024.138130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
The lipocalin carrier protein, β-lactoglobulin (β-lg), stands out as a crucial protein in the food industry, known for its ability to effectively bind with hydrophobic small molecules. However, it was unclear how β-lg interacts with macrocyclic molecules. In this research, we focused on two key aspects. First, we synthesized a 24-membered macrocycle 4d by modifying a natural product chalcone to create a macrocycle by connecting two ortho-hydroxyl groups of each phenyl ring of two chalcone units with alkyl chains. To enhance solubility, we converted the chalcone CC bonds to epoxide rings. Second, we investigated the binding ability and mechanism of binding of the compound with the β-lg. The β-lg and 4d interaction shows an isoemissive point at 382 nm with Kb = 4.64 ± 0.02 × 105 at 298 K, indicating the excellent protein binding ability of 4d. Remarkably, despite its size, 4d binds to the protein without altering its conformation, suggesting the availability of a spacious binding site on the protein where the molecule fits well. Molecular docking analysis confirmed the presence of such a site at the mouth of the calyx. Additionally, our 200 ns molecular dynamics simulation demonstrated that 4d adopts a conformation to interact with the hydrophobic amino acids of the binding site, ultimately stabilizing the protein.
Collapse
Affiliation(s)
- Rina Mondal
- Department of Chemistry, Uluberia College, Howrah, West Bengal 711 315, India
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India.
| |
Collapse
|
2
|
Malik A, Alamri A, Altwaijry N, Alamro A, Alhomida A, Ayub R, Odeibat H. Unraveling the Effects of Hexametaphosphate: Insights into Trypsin Aggregation and Structural Reversal. ACS OMEGA 2024; 9:50537-50543. [PMID: 39741823 PMCID: PMC11683647 DOI: 10.1021/acsomega.4c08286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Elevated serum phosphate levels have been linked to increased mortality rates. This study investigated the effect of millimolar (mM) concentrations of sodium hexametaphosphate (SHMP) on trypsin's aggregation and structural stability at intestinal pH levels. We used various spectroscopic and microscopic techniques to investigate the structural changes of trypsin aggregates. Turbidity and light scattering results revealed that trypsin aggregates began to solubilize at SHMP concentrations above 1 mM, with maximum solubilization observed at 6 mM SHMP. Intrinsic, thioflavin T (ThT) fluorescence, and far-UV CD spectra indicated that trypsin amorphous aggregates turn into native-like structures in the presence of 6 mM SHMP. Transmission electron microscope (TEM) imaging also showed the disappearance of amorphous aggregates at higher SHMP concentrations. This study showed that higher SHMP concentrations solubilized the trypsin aggregates and induced a native-like conformation. These findings highlighted that SHMP could be a good protein aggregate solubilizer, with future applications in inclusion body solubilization and protein refolding.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abir Alamro
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Alhomida
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Department of Science Technology & Innovation, King Saud University, P.O. Box-2454, Riyadh 11451, Saudi Arabia
| | - Hamza Odeibat
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Ghasemi M, Habibian-Dehkordi S, Farhadian S. Change in thermal stability and molecular structure characteristics of whey protein beta-lactoglobulin upon the interaction with levamisole hydrochloride. Food Chem 2024; 431:137073. [PMID: 37598650 DOI: 10.1016/j.foodchem.2023.137073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
The interaction between beta-lactoglobulin (BLG) and anthelmintic compounds including levamisole (LEV) is a matter of great concern as it not only poses potential health and environmental risks but also has significant implications for food processing and production. The mechanisms of LEV-BLG interaction were investigated through spectral and molecular modeling approaches. Fluorescence and UV-Visible investigations indicated the formation of a spontaneous and stable LEV-BLG complex. Structural changes of BLG were revealed by circular dichroism and Fourier transform infrared studies. The thermal stability of BLG increased in the presence of LEV. Molecular docking studies indicated the best mode of LEV-BLG interaction and molecular dynamics simulation confirmed the stability of the LEV-BLG complex. In conclusion, our study sheds light on the potential of BLG to interact with deleterious substances such as anthelmintic agents, thus highlighting the necessity of further research in this field to assure food safety and prevent any health hazards.
Collapse
Affiliation(s)
- Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Saied Habibian-Dehkordi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
4
|
Xu J, Huang Y, Wei Y, Weng X, Wei X. Study on the Interaction Mechanism of Theaflavin with Whey Protein: Multi-Spectroscopy Analysis and Molecular Docking. Foods 2023; 12:1637. [PMID: 37107433 PMCID: PMC10137913 DOI: 10.3390/foods12081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The interaction mechanism of whey proteins with theaflavin (TF1) in black tea was analyzed using multi-spectroscopy analysis and molecular docking simulations. The influence of TF1 on the structure of bovine serum albumin (BSA), β-lactoglobulin (β-Lg), and α-lactoalbumin (α-La) was examined in this work using the interaction of TF1 with these proteins. Fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy revealed that TF1 could interact with BSA, β-Lg and α-La through a static quenching mechanism. Furthermore, circular dichroism (CD) experiments revealed that TF1 altered the secondary structure of BSA, β-Lg and α-La. Molecular docking demonstrated that the interaction of TF1 with BSA/β-Lg/α-La was dominated by hydrogen bonding and hydrophobic interaction. The binding energies were -10.1 kcal mol-1, -8.4 kcal mol-1 and -10.4 kcal mol-1, respectively. The results provide a theoretical basis for investigating the mechanism of interaction between tea pigments and protein. Moreover, the findings offered technical support for the future development of functional foods that combine tea active ingredients with milk protein. Future research will focus on the effects of food processing methods and different food systems on the interaction between TF1 and whey protein, as well as the physicochemical stability, functional characteristics, and bioavailability of the complexes in vitro or in vivo.
Collapse
Affiliation(s)
- Jia Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Ramos-Souza C, Bandoni DH, Bragotto APA, De Rosso VV. Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Compr Rev Food Sci Food Saf 2023; 22:380-407. [PMID: 36374221 DOI: 10.1111/1541-4337.13072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
The food industry uses dyes mainly to overcome color loss during the processing and storage of products, with the azo dyes currently being the most employed. Studies on the safety of using these dyes in foods started in the 1950s and have indicated the potential for concern. This review discusses the risk assessment of food intake containing artificial azo dyes. There are case reports and, subsequently, double-blind placebo-controlled trials in some individuals who may experience adverse effects from the intake of azo dyes, but it is unclear whether these adverse effects are restricted to specific populations or more generalized. In view of this, different toxicological endpoints are evaluated to verify toxic effects in in vitro and in vivo models and to establish the no observed adverse effect level. Exposure estimation studies have shown that human exposure to azo dyes via oral intake is mainly below the acceptable daily intake established by advisory bodies. However, most countries do not have studies that estimate the oral intake of azo dyes. In this case, local food diversity and racial-ethnic specificities are not considered when stating the exposure estimate is below the acceptable daily intake for the human population and thus may not represent actual intake. Concerning the scenario established above, this review discusses the most critical gaps to be overcome to contribute to the direction of future studies and the development of more effective public policies concerning the safety of the intake of artificial azo dyes.
Collapse
Affiliation(s)
- Caroline Ramos-Souza
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Henrique Bandoni
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Veridiana Vera De Rosso
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
6
|
Habibian-Dehkordi S, Farhadian S, Ghasemi M, Evini M. Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Loch JI, Barciszewski J, Śliwiak J, Bonarek P, Wróbel P, Pokrywka K, Shabalin IG, Minor W, Jaskolski M, Lewiński K. New ligand-binding sites identified in the crystal structures of β-lactoglobulin complexes with desipramine. IUCRJ 2022; 9:386-398. [PMID: 35546795 PMCID: PMC9067113 DOI: 10.1107/s2052252522004183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The homodimeric β-lactoglobulin belongs to the lipocalin family of proteins that transport a wide range of hydrophobic molecules and can be modified by mutagenesis to develop specificity for novel groups of ligands. In this work, new lactoglobulin variants, FAF (I56F/L39A/M107F) and FAW (I56F/L39A/M107W), were produced and their interactions with the tricyclic drug desipramine (DSM) were studied using X-ray crystallography, calorimetry (ITC) and circular dichroism (CD). The ITC and CD data showed micromolar affinity of the mutants for DSM and interactions according to the classical one-site binding model. However, the crystal structures unambiguously showed that the FAF and FAW dimers are capable of binding DSM not only inside the β-barrel as expected, but also at the dimer interface and at the entrance to the binding pocket. The presented high-resolution crystal structures therefore provide important evidence of the existence of alternative ligand-binding sites in the β-lactoglobulin molecule. Analysis of the crystal structures highlighted the importance of shape complementarity for ligand recognition and selectivity. The binding sites identified in the crystal structures of the FAF-DSM and FAW-DSM complexes together with data from the existing literature are used to establish a systematic classification of the ligand-binding sites in the β-lactoglobulin molecule.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paulina Wróbel
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Kinga Pokrywka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Krzysztof Lewiński
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Zhou Z, Zhu M, Zhang G, Hu X, Pan J. Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Habibian Dehkordi S, Farhadian S, Ghasemi M. The interaction between the azo dye tartrazine and α-Chymotrypsin enzyme: Molecular dynamics simulation and multi-spectroscopic investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Ghosh M, Sepay N, Rizzoli C, Ghosh CK, Banerjee A, Saha S. Mononuclear copper( ii) Schiff base complex: synthesis, structure, electrical analysis and protein binding study. NEW J CHEM 2021. [DOI: 10.1039/d0nj04610h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear copper(ii)-Schiff base complex has been explored for dual applications – complete electrical analysis and BSA protein binding study.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Chemistry
- Acharya Prafulla Chandra College
- Kolkata-700131
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Corrado Rizzoli
- Universitá degli Studi di Parma
- Dipartimento S.C.V.S.A
- 43124 Parma
- Italy
| | - Chandan Kumar Ghosh
- Department of Material Science and Technology
- Jadavpur University
- Kolkata-700032
- India
| | - Abhijit Banerjee
- Department of Electronic Science, Acharya Prafulla Chandra College
- Kolkata-700131
- India
| | - Sandip Saha
- Department of Chemistry
- Acharya Prafulla Chandra College
- Kolkata-700131
- India
| |
Collapse
|
12
|
Wang D, Lv P, Zhang L, Yang S, Wei Y, Mao L, Yuan F, Gao Y. Enhanced Physicochemical Stability of β-Carotene Emulsions Stabilized by β-Lactoglobulin-Ferulic Acid-Chitosan Ternary Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8404-8412. [PMID: 32672950 DOI: 10.1021/acs.jafc.0c01757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The purpose of the present work is to fabricate emulsions with excellent stability to deliver β-carotene using a novel biomacromolecule. β-Lactoglobulin-ferulic acid-chitosan ternary conjugate (BFCC), which was synthesized based on the carbodiimide-mediated coupling reaction and laccase induction, was confirmed by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectra. Also, BFCC was used to stabilize β-carotene emulsions. The results indicated that the concentration of BFCC affected the physical stability of β-carotene emulsions. Compared with the emulsions stabilized by β-lactoglobulin (β-LG), chitosan-ferulic acid conjugate (CFC), and β-LG-CFC mixture (BFCM), the emulsion stabilized by BFCC exhibited better stability under various environmental stresses. Moreover, the emulsion stabilized by BFCC had higher β-carotene retention during storage at 25 and 55 °C or under ultraviolet (UV) light exposure. The knowledge acquired in the current research offered an effective way to develop novel biomacromolecular emulsifiers and could find potential in fabricating delivery systems for bioactive compounds with markedly enhanced physiochemical properties.
Collapse
Affiliation(s)
- Di Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Peifeng Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Liang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Shuqiao Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yang Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Fang Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
13
|
Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies. Saudi Pharm J 2020; 28:238-245. [PMID: 32194324 PMCID: PMC7078544 DOI: 10.1016/j.jsps.2020.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Polyphenols has attained pronounced attention due to their beneficial values of health and found to prevent several chronic diseases. Here, we elucidated binding mechanism between frequently consumed polyphenol “tea catechin” and milk protein bovine beta-lactoglobulin (β-Lg). We investigated the conformational changes of β-Lg due to interaction with catechin using spectroscopic and in silico studies. Fluorescence quenching data (Stern-Volmer quenching constant) revealed that β-Lg interacted with catechin via dynamic quenching. Thermodynamic data revealed that the interaction between β-Lg and catechin is endothermic and spontaneously interacted mainly through hydrophobic interactions. The UV-Vis absorption and far-UV circular dichroism (CD) spectroscopy exhibited that the tertiary as well as secondary structure of β-Lg distorted after interaction with catechin. Molecular docking and simulation studies also confirm that catechin binds at the central cavity of β-Lg with high affinity (~105 M−1) and hydrophobic interactions play significant role in the formation of a stable β-Lg-catechin complex.
Collapse
|
14
|
Patel BK, Sepay N, Mahapatra A. Structural alteration of myoglobin with two homologous cationic surfactants and effect of β-cyclodextrin: multifaceted insight and molecular docking study. NEW J CHEM 2020. [DOI: 10.1039/d0nj01113d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural alteration and regeneration of myoglobin.
Collapse
Affiliation(s)
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | | |
Collapse
|