1
|
Xia L, Yuan L, Zhou K, Zeng J, Zhang K, Zheng G, Fu Q, Xia Z, Fu Q. Mixed-Solvent-Mediated Strategy for Enhancing Light Absorption of Polydopamine and Adhesion Persistence of Dopamine Solutions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22493-22505. [PMID: 37114979 DOI: 10.1021/acsami.3c00769] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mussel-inspired polydopamine (PDA) and its derivative materials have exhibited a huge potential as a facile and versatile route to fabricate multifunctional coatings on virtually any substrate surface. However, their performance and applicability are frequently obstructed by limited optical absorption in visible regions of PDA and poor surface adhesion persistence of dopamine solutions. Herein, we report a facile strategy to improve these problems by rationally regulating the dopamine polymerization pathway through mixed-solvent-mediated periodate oxidation of dopamine. The spectral analysis, ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry, and density functional theory simulations systematically demonstrate that the mixed-solvent reaction systems can effectively accelerate the periodate-induced formation of cyclized moieties in the PDA microstructure and inhibit their further oxidative cleavage, thus contributing to narrowing the inherent energy band gap of PDA and improving the long-lasting surface deposition performance of aged dopamine solutions. Moreover, the newly constructed cyclized species-rich PDA coatings have excellent surface uniformity and significantly enhanced chemical stability. Benefiting from these fascinating properties, they have been further used for permanent dyeing of natural gray hair with remarkably improved blackening effect and excellent practicability, which exhibited their promising prospect in real-world applications.
Collapse
Affiliation(s)
- Lan Xia
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Yuan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Guocan Zheng
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Qiang Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Jiang Y, Minett M, Hazen E, Wang W, Alvarez C, Griffin J, Jiang N, Chen W. New Insights into Spin Coating of Polymer Thin Films in Both Wetting and Nonwetting Regimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12702-12710. [PMID: 36201003 DOI: 10.1021/acs.langmuir.2c02206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spin coating is a common method for fabricating polymer thin films on flat substrates. The well-established Meyerhofer relationship between film thickness (h) and spin rate (ω), h ∝ ω-1/2, enables the preparation of thin films with desired thickness by adjusting the spin rate and other experimental parameters. The 1/2 exponent has been verified by previous studies involving organic thin films prepared on silicon wafers. In this study, 88% and >99% hydrolyzed poly(vinyl alcohol) (PVOH) polymers were adsorbed and spin-coated from an aqueous solution onto four different substrates. The substrates were prepared by covalently attaching poly(dimethylsiloxane) (PDMS) of different molecular weights onto silicon wafers (SiO2). Atomic force microscopy images indicate that the PVOH films transitioned from stable on SiO2, to metastable, and then to unstable as PDMS molecular weight was increased. Notably, none of the polymer-substrate systems studied here exhibited the thickness-spin rate profile predicted by the Meyerhofer model. Based on the experimental results, a more general adsorption-deposition model is proposed that decouples the total spin-coated thickness into two components─the adsorbed thickness (h1) and the spin-deposited thickness (h2). The former accounts for polymer-substrate interactions, and the latter depends on polymer concentration and spin rate. In unstable systems, the exponents were found to be ∼0 because slip takes place at the solution-substrate interface during spin and the spin-deposited thickness is 0. In metastable and stable systems, a universal relationship between spin-deposited thickness and spin rate emerged, independent of the substrate type and polymer concentration for each polymer examined. Our findings indicate the importance of film stability and polymer-substrate interactions in the application of spin coating.
Collapse
Affiliation(s)
- Yuxin Jiang
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Margaret Minett
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Elizabeth Hazen
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Wenyun Wang
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Carolina Alvarez
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Julia Griffin
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Nancy Jiang
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| | - Wei Chen
- Chemistry Department, Carr Laboratory, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts01075, United States
| |
Collapse
|
3
|
Gao L, Zhao X, Zhang Y, Yang L, Wang R, Ma Z, Liang YM, Ma S, Zhou F. Bioinspired Polysaccharide Derivative with Efficient and Stable Lubrication for Silicon-Based Devices. Biomacromolecules 2022; 23:3766-3778. [PMID: 35980819 DOI: 10.1021/acs.biomac.2c00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is becoming increasingly important to synthesize efficient biomacromolecule lubricants suitable for medical devices. Even though the development of biomimetic lubricants has made great progress, the current system suitable for hydrophobic silicone-based medical devices is highly limited. In this work, we synthesize one kind of novel polysaccharide-derived macromolecule lubricant of chitosan (CS) grafted polyethylene glycol (PEG) chains and catechol groups (CT) (CS-g-PEG-g-CT). CS-g-PEG-g-CT shows good adsorption ability by applying quantitative analysis of quartz crystal microbalance (QCM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and confocal fluorescence imaging technique, as well as the typical shear-thinning feature. CS-g-PEG-g-CT exhibits low and stable coefficients of friction (COFs) (0.01-0.02) on polydimethylsiloxane (PDMS) surfaces at a wide range of mass concentrations in diverse media including pure water, physiological saline, and PBS buffer solution and is even tolerant to various normal loads and sliding frequencies for complex pressurizing or shearing environments. Subsequently, systematic surface characterizations are used to verify the dynamic attachment ability of the CS-g-PEG-g-CT lubricant on the loading/shearing process. The lubrication mechanism of CS-g-PEG-g-CT can be attributed to the synergy of strong adsorption from catechol groups to form a uniform assembly layer, excellent hydration effect from PEG chains, and typical shear-thinning feature to dissipate viscous resistance. Surprisingly, CS-g-PEG-g-CT exhibits efficient lubricity on silicone-based commercial contact lenses and catheters. The current macromolecule lubricant demonstrates great real application potential in the fields of medical devices and disease treatments.
Collapse
Affiliation(s)
- Luyao Gao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Yunlei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lumin Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Baiyin Zhongke Innovation Research Institute of Green Materials, Baiyin 730900, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|