1
|
Jung Y, Hwang J, Cho H, Yoon JH, Lee JH, Song J, Kim D, Ahn M, Hong BH, Kweon DH. Graphene quantum dots as potential broad-spectrum antiviral agents. NANOSCALE ADVANCES 2025; 7:2032-2038. [PMID: 39974343 PMCID: PMC11833456 DOI: 10.1039/d4na00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
As pandemic viruses have become a threat to people, various treatments have been developed, including vaccines, neutralizing antibodies, and inhibitors. However, some mutations in the target envelope protein limit the efficiency of these treatments. Therefore, the development of broad-spectrum antiviral agents targeting mutation-free viral membranes is of considerable importance. Herein, we propose graphene quantum dots (GQDs) as broad-spectrum antiviral agents, wherein the amphiphilic properties of GQDs destroy the viral membranes, regardless of the type of viruses, including SARS-CoV-2 and influenza virus. We observed that GQDs suppress both viral infection and replication and demonstrated their low cytotoxicity in a cell line and a mouse model, revealing the potential of GQDs as a universal first-line treatment for various viral diseases.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jong-Hwan Lee
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Jaekwang Song
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Donghoon Kim
- Department of Pharmacology, Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine Busan 49201 Republic of Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
2
|
Lanai V, Chen Y, Naumovska E, Pandit S, Schröder E, Mijakovic I, Rahimi S. Differences in interaction of graphene/graphene oxide with bacterial and mammalian cell membranes. NANOSCALE 2024; 16:1156-1166. [PMID: 38126749 DOI: 10.1039/d3nr05354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Graphene, a single layer, hexagonally packed two-dimensional carbon sheet is an attractive candidate for diverse applications including antibacterial potential and drug delivery. One of the knowledge gaps in biomedical application of graphene is the interaction of these materials with the cells. To address this, we investigated the interaction between graphene materials (graphene and graphene oxide) and plasma membranes of cells (bacterial and mammalian cells). The interactions of four of the most abundant phospholipids in bacteria and mammalian plasma membranes with graphene materials were studied using density functional theory (DFT) at the atomic level. The calculations showed that the mammalian phospholipids have stronger bonding to each other compared to bacterial phospholipids. When the graphene/graphene oxide sheet is approaching the phospholipid pairs, the bacterial pairs exhibit less repulsive interactions, thereby a more stable system with the sheets was found. We also assembled bacterial and mammalian phospholipids into liposomes. We further observed that the bacterial liposomes and cells let the graphene flakes penetrate the membrane. The differential scanning calorimetry measurements of liposomes revealed that the bacterial liposomes have the lowest heat capacity; this strengthens the theoretical predictions of weaker interaction between the bacterial phospholipids compared to the mammalian phospholipids. We further demonstrated that graphene oxide could be internalized into the mammalian liposomes without disrupting the membrane integrity. The results suggest that the weak bonding among bacteria phospholipids and less repulsive force when graphene materials approach, result in graphene materials interacting differently with the bacteria compared to mammalian cells.
Collapse
Affiliation(s)
- Victor Lanai
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Yanyan Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Elena Naumovska
- Energy and Materials division, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Elsebeth Schröder
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
3
|
Arita K, Yarimizu S, Moriguchi M, Inoue T, Asahara H. Synthesis of Zwitterionic Phospholipid-Connected Silane Coupling Agents and Their Hybridization with Graphene Oxide. J Oleo Sci 2024; 73:857-863. [PMID: 38825539 DOI: 10.5650/jos.ess24044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
The hybridization of lipids with graphene is expected to produce a promising, novel biomaterial. However, there are limited examples of the covalent introduction of lipid molecules, especially the immobilization of lipid molecules, onto graphene on a substrate. Therefore, we investigated the hybridization of a silane coupling agent having phospholipid moieties with graphene oxide on substrates prepared by photo-oxidation using chlorine dioxide. Three silane coupling agents with different carbon chain lengths (C4, C6, C8) were synthesized and phospholipid molecules were introduced onto graphene on a substrate. Phospholipid-immobilized graphene on a grid for TEM (transmission electron microscope) was used for EM analysis of proteins (glyceraldehyde 3-phosphate dehydrogenase and β-galactosidase), enabling the observation of sufficient particles compared to the conventional graphene grid.
Collapse
Affiliation(s)
- Kanato Arita
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Seina Yarimizu
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Maiko Moriguchi
- Department of Biophysical Chemistry School of Pharmaceutical Science, Wakayama Medical University
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
4
|
Miao L, Wei Y, Lu X, Jiang M, Liu Y, Li P, Ren Y, Zhang H, Chen W, Han B, Lu W. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv Drug Deliv Rev 2024; 204:115131. [PMID: 37977338 DOI: 10.1016/j.addr.2023.115131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yaoyao Wei
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xue Lu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Min Jiang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Mandal P, Ghosh SK. Graphene-Based Nanomaterials and Their Interactions with Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18713-18729. [PMID: 38096427 DOI: 10.1021/acs.langmuir.3c02805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Graphene-based nanomaterials (GNMs) have captured increasing attention in the recent advancement of materials science and nanotechnology owing to their excellent physicochemical properties. Despite having unquestionable advances, the application of GNMs in biological and medical sciences is still limited due to the lack of knowledge and precise control over their interaction with the biological milieu. The cellular membrane is the first barrier with which GNMs interact before entering a cell. Therefore, understanding how they interact with cell membranes is important from the perspective of safe use in biological and biomedical fields. In this review, we systematically summarize the recent efforts in predicting the interactions between GNMs and model cellular membranes. This review provides insights into how GNMs interact with lipid membranes and self-assemble in and around them. Both the computational simulations and experimental observations are summarized. The interactions are classified depending on the physicochemical properties (structure, chemistry, and orientation) of GNMs and various model membranes. The thermodynamic parameters, structural details, and supramolecular forces are listed to understand the interactions which would help circumvent potential risks and provide guidance for safe use in the future. At the end of this review, future prospective and emerging challenges in this research field are discussed.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
6
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
7
|
Feng Y, Lao J, Zou J, Zhu Z, Li D, Liu G, Mao L. Interaction of Graphitic Carbon Nitride with Cell Membranes: Probing Phospholipid Extraction and Lipid Bilayer Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17663-17673. [PMID: 36456188 DOI: 10.1021/acs.est.2c05560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how nanomaterials interact with cell membranes has important implications for ecotoxicology and human health. Here, we investigated the interactions between graphitic carbon nitride (g-C3N4, CN) and red blood cells, a plausible contact target for nanoparticles when they enter the bloodstream. Through a hemolysis assay, the cytotoxicity of CN derived from different precursors was quantitatively assessed, which is highly related to the surface area of CN. Reactive oxygen species (ROS) generation and lipid peroxidation detection confirmed that CN causes rapid cell membrane rupture by a physical interaction mechanism rather than ROS-related chemical oxidation. Dye leakage assay and theoretical simulation indicated that the less-layered CN is prone to folding inward to wrap and extract lipid molecules from cell membranes. The electron-rich inherent pores of CN play a dominant role in capturing the headgroups of phospholipids, whereas the hydrophobic interaction is critical for the anchoring of lipid tails. Our further experimental evidence demonstrated that the destructive extraction of phospholipids from cell membranes by CN occurs primarily in the outer leaflet, and phosphatidylcholine is the most easily extracted lipid. Moreover, the formation of protein corona on CN was found to decrease the nonspecific interactions but increase steric repulsion, thus mitigating CN cytotoxicity. Overall, our data provide a molecular basis for CN's cytotoxicity.
Collapse
Affiliation(s)
- Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiayong Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiale Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Daguang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
8
|
Rahimi S, Chen Y, Zareian M, Pandit S, Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev 2022; 189:114467. [PMID: 35914588 DOI: 10.1016/j.addr.2022.114467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials are promising nanocarriers in this respect, due to their high drug loading capacity and biocompatibility. In this review, we present an overview on the interactions of graphene-based materials with normal mammalian cells at the molecular level as well as cellular and subcellular levels, including plasma membrane, cytoskeleton, and membrane-bound organelles such as lysosomes, mitochondria, nucleus, endoplasmic reticulum, and peroxisome. In parallel, we assemble the knowledge about the interactions of graphene-based materials with cancerous cells, that are considered as the potential applications of these materials for cancer therapy including metastasis treatment, targeted drug delivery, and differentiation to non-cancer stem cells. We highlight the influence of key parameters, such as the size and surface chemistry of graphene-based materials that govern the efficiency of internalization and biocompatibility of these particles in vitro and in vivo. Finally, this review aims to correlate the key parameters of graphene-based nanomaterials specially graphene oxide, such as size and surface modifications, to their interactions with the cancerous and non-cancerous cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Yanyan Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Mohsen Zareian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; State Key Laboratory of Bio-based Material and Green Paper-making, Qilu University of Technology, Jinan, China
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Ma XY, Zhang WY, Ye K, Jiang K, Cai WB. Electrolyte-Layer-Tunable ATR-SEIRAS for Simultaneous Detection of Adsorbed and Dissolved Species in Electrochemistry. Anal Chem 2022; 94:11337-11344. [PMID: 35930311 DOI: 10.1021/acs.analchem.2c02092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A balanced detection of both adsorbates and dissolved species is very important for the clarification of the electrochemical reaction mechanism yet remains a major challenge for different modes of electrochemical infrared (IR) spectroscopy. Among others, conventional attenuated total reflection-surface-enhanced IR absorption spectroscopy (ATR-SEIRAS) is far less sensitive to low-concentration solution species than to surface species. We report herein an electrochemical wide-frequency ATR-SEIRAS with a novel thin-layer flow cell design, fulfilling the simultaneous detection of the variations of surface and solution species. This setup consists of a silicon wafer (with one side micromachined and the other side metallized), a thin-layer electrolyte structure with tunable thickness and flow rate, and a tilt-correction system based on laser collimation, enabling a well-controlled mass transport within the electrolyte layer and the spectral differentiation of solution species from adsorbates. Using acidic methanol oxidation on a Pt film electrode as a model system, besides SEIRA bands for adsorbed CO and formate intermediates, IR spectral signals for dissolved products CO2, formic acid, and methyl formate can be readily identified for a quiescent electrolyte layer of ∼20 μm, which are otherwise undetected with conventional ATR-SEIRAS, as indicated by the trend of spectral features with increasing thickness or flow rate.
Collapse
Affiliation(s)
- Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Wei-Yi Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ke Ye
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Li S, Wu L, Zhu M, Cheng X, Jiang X. Effect of dipole potential on the orientation of Voltage-gated Alamethicin peptides regulated by chaotropic anions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mandal P, Giri RP, Murphy BM, Ghosh SK. Self-Assembly of Graphene Oxide Nanoflakes in a Lipid Monolayer at the Air-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57023-57035. [PMID: 34817153 DOI: 10.1021/acsami.1c19004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The graphene family, especially graphene oxide (GO), has captured increasing prospects in the biomedical field due to its excellent physicochemical properties. Understanding the health and environmental impact of GO is of great importance for guiding future applications. Although their interactions with living organisms are omnipresent, the exact molecular mechanism is yet to be established. The cellular membrane is the first barrier for a foreign molecule to interact before entering into the cell. In the present study, a model system consisting of a lipid monolayer at the air-water interface represents one of the leaflets of this membrane. Surface pressure-area isotherms and advanced synchrotron X-ray scattering techniques have been employed to comprehend the interaction by varying the electrostatics of the membrane. The results depict a strong GO interaction with positively charged phospholipids, weak interaction with zwitterionic lipids, and interestingly negligible interaction with negatively charged lipids. GO flakes induce significant changes in the out-of-plane organization of a positively charged lipid monolayer with a minor influence on in-plane assembly of lipid chains. This interaction is packing-specific, and the influence of GO is much stronger at lower surface pressure. Even though for zwitterionic phospholipids, the GO flakes may partly insert into the lipid chains, the X-ray scattering results indicate that the flakes preferentially lie horizontally underneath the positively charged lipid monolayer. This in-depth structural description may pave new perspectives for the scientific community for the development of GO-based biosensors and biomedical materials.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
13
|
Recent progress of vibrational spectroscopic study on the interfacial structure of biomimetic membranes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Liu W, Luo H, Wei Q, Liu J, Wu J, Zhang Y, Chen L, Ren W, Shao L. Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioact Mater 2021; 9:92-104. [PMID: 34820558 PMCID: PMC8586026 DOI: 10.1016/j.bioactmat.2021.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
Graphene oxide (GO) exhibits good mechanical and physicochemical characteristics and has extensive application prospects in bone tissue engineering. However, its effect on angiogenesis is unclear, and its potential toxic effects are heavily disputed. Herein, we found that nanographene oxide (NGO) synthesized by one-step water electrolytic oxidation is smaller and shows superior biocompatibility. Moreover, NGO significantly enhanced angiogenesis in calvarial bone defect areas in vivo, providing a good microenvironment for bone regeneration. Endothelial tip cell differentiation is an important step in the initiation of angiogenesis. We verified that NGO activates endothelial tip cells by coupling with lysophosphatidic acid (LPA) in serum via strong hydrogen bonding interactions, which has not been reported. In addition, the mechanism by which NGO promotes angiogenesis was systematically studied. NGO-coupled LPA activates LPAR6 and facilitates the formation of migratory tip cells via Hippo/Yes-associated protein (YAP) independent of reactive oxygen species (ROS) stimulation or additional complex modifications. These results provide an effective strategy for the application of electrochemically derived NGO and more insight into NGO-mediated angiogenesis. Electrochemically derived nanographene oxide (NGO) has good cytocompatibility without upregulating reactive oxygen species. NGO exhibits better dispersibility and couples with endogenous lysophosphatidic acid (LPA) in body fluid. NGO enhances the angiogenesis by recruiting endogenous LPA and promoting endothelial tip cell formation.
Collapse
Affiliation(s)
- Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Haiyun Luo
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qinwei Wei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lili Chen
- Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
- Corresponding author. Stomatological Hospital, Southern Medical University, Guangzhou 510280, China Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Graphene coated magnetic nanoparticles facilitate the release of biofuels and oleochemicals from yeast cell factories. Sci Rep 2021; 11:20612. [PMID: 34663845 PMCID: PMC8523743 DOI: 10.1038/s41598-021-00189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
Engineering of microbial cells to produce high value chemicals is rapidly advancing. Yeast, bacteria and microalgae are being used to produce high value chemicals by utilizing widely available carbon sources. However, current extraction processes of many high value products from these cells are time- and labor-consuming and require toxic chemicals. This makes the extraction processes detrimental to the environment and not economically feasible. Hence, there is a demand for the development of simple, effective, and environmentally friendly method for the extraction of high value chemicals from these cell factories. Herein, we hypothesized that atomically thin edges of graphene having ability to interact with hydrophobic materials, could be used to extract high value lipids from cell factories. To achieve this, array of axially oriented graphene was deposited on iron nanoparticles. These coated nanoparticles were used to facilitate the release of intracellular lipids from Yarrowia lipolytica cells. Our treatment process can be integrated with the growth procedure and achieved the release of 50% of total cellular lipids from Y. lipolytica cells. Based on this result, we propose that nanoparticles coated with axially oriented graphene could pave efficient, environmentally friendly, and cost-effective way to release intracellular lipids from yeast cell factories.
Collapse
|
16
|
Alkhayal A, Fathima A, Alhasan AH, Alsharaeh EH. PEG Coated Fe 3O 4/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia. NANOMATERIALS 2021; 11:nano11092398. [PMID: 34578714 PMCID: PMC8465805 DOI: 10.3390/nano11092398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have high saturation magnetization and are promising candidates for hyperthermia. They may act as magnetic heating agents when subjected to magnetic field in nano-based hyperthermia. In this work, cube-like Fe3O4 nanoparticles (labelled as cubic SPIONs) with reduced graphene oxide (RGO) nanocomposites were prepared by a microwave hydrothermal method. The shape and size of magnetic nanoparticles were controlled by varying synthesis parameters, including reaction time, pressure and microwave power. This study successfully synthesized cubic SPIONs nanocomposites with an average particle size between 24–34 nm. Poly-(ethylene) glycol (PEG) was used as a coating material on SPIONs to enhance biocompatibility. The RGO sheets provided a high surface area-to-volume ratio for SPIONs to be dispersed on their surface, and hence, they prevented aggregation of the SPIONs in the nanocomposites. Magnetically induced heating studies on the optimized nanocomposite (Fe3O4/RGO/PEG) demonstrated heating capabilities for magnetic hyperthermia application with a promising specific absorption rate (SAR) value of 58.33 W/g in acidic solution. Cytotoxicity tests were also performed to ensure low nanoparticle toxicity before incorporation into the human body. The results of the standard assay for the toxicity determination of the nanocomposites revealed over 70% cell survival after 48 h, suggesting the feasibility of using the synthesized nanocomposites for magnetic hyperthermia.
Collapse
Affiliation(s)
- Anoud Alkhayal
- College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (A.A.); (A.F.)
| | - Arshia Fathima
- College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (A.A.); (A.F.)
| | - Ali H. Alhasan
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia;
| | - Edreese H. Alsharaeh
- College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (A.A.); (A.F.)
- Correspondence:
| |
Collapse
|
17
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Wu L, Jiang X. Enhancing Peroxidase Activity of Cytochrome c by Modulating Interfacial Interaction Forces with Graphene Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1094-1102. [PMID: 31951423 DOI: 10.1021/acs.langmuir.9b03151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) has drawn worldwide attention in various biomedical fields because of its unique properties, and great progress has been made in the past years. Probing the interaction between GO and proteins, understanding and evaluating potential impact of GO on the protein structure and function, is of significant importance for design and optimization of functional interfaces and revealing the bioeffect of GO materials. Cytochrome c (cyt c), one of the key components of respiratory chain, has played important roles in energy generation/consumption and many cellular processes including growth, proliferation, differentiation, and apoptosis. In this study, by combination of solution chemistry and spectroscopy, we systematically studied the interfacial interaction between GO and cyt c. Results suggest that GO could slightly perturb the active site of cyt c, enhancing its peroxidase activity. Structure of the active site is obviously changed with elapsed time, which in turn reduces peroxidase activity. Further study suggests that adsorption of cyt c on GO and the resulted structure change is a complex process resulting from the cooperation of various interaction forces. Hydrophobic interaction and π-π stacking, as well as electrostatic attraction, only slightly perturb the microenvironment of the active site of cyt c while hydrogen-bonding interaction is the main driving force for the structural change of the active site. Furthermore, long range electrostatic attraction between GO and cyt c may facilitate the short range hydrogen-bonding interaction, which intensifies the hydrogen-bonding-induced structural change. In addition, cyt c is partially reduced by GO in an alkaline environment. Based on the understanding of interfacial interaction mechanism between GO and cyt c, stable nanocomposites with enhanced peroxidase activity are successfully constructed by modulating the interfacial interaction forces. This work not only deepens the understanding of interaction between GO and functional protein, but also is of great importance for designing and applying of GO-based biomaterials.
Collapse
Affiliation(s)
- Lie Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin , China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin , China
| |
Collapse
|