1
|
Strojny-Cieślak B, Pruchniewski M, Sosnowska M, Szczepaniak J, Wierzbicki M. Toxicological insights into graphene family materials: Cytochrome P450 modulation and cellular stress in liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179211. [PMID: 40138895 DOI: 10.1016/j.scitotenv.2025.179211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Graphene family materials (GFM), including pristine graphene (GN), graphene oxide (GO), and nano-sized graphene oxide (nGO), are increasingly utilized across industrial, environmental, and biomedical domains. Despite their potential benefits, the hazardous effects of GFM, particularly on liver xenobiotic-metabolizing enzymes and cellular functions, are not fully understood. Cytochrome P450 (CYP) are enzymes conserved across species, which play a crucial role in the metabolism of xenobiotics, drugs, environmental pollutants, and endogenous compounds, are key to understanding the biotransformation and detoxification processes impacted by GFM. This study investigates the effects of GFMs on CYP enzymes (CYP1A2, CYP2D6, CYP3A4) in a recombinant CYP system and HepG2 liver cells, alongside an assessment of cellular stress responses. In HepG2 cells, GFMs induced oxidative stress, mitochondrial depolarization, and cytotoxicity, with GN causing the most pronounced effects. GO exhibited the strongest inhibition of CYP enzymatic activity, particularly CYP1A2, in a dose-dependent manner in a recombinant CYP system. None of the tested nanomaterials significantly altered CYP expression, except for nGO, where a slight increase in CYP3A4 protein expression was observed. These findings highlight the significant influence of GFM physicochemical properties on their hazardous potential, especially their ability to disrupt metabolic processes and induce cellular stress. This study emphasizes the critical need for evaluating the safety of GFM in light of their widespread application and potential environmental and human health implications.
Collapse
Affiliation(s)
- Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland.
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C str, 02-776 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Yang F, Xie HH, Du F, Hou X, Tang SF. Insight into the efficient loading and enhanced activity of enzymes immobilized on functionalized UiO-66. Int J Biol Macromol 2024; 279:135557. [PMID: 39265898 DOI: 10.1016/j.ijbiomac.2024.135557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Enzyme immobilization is an effective strategy for achieving efficient and sustainable enzyme catalysis. As a kind of promising enzyme-loading materials, the systematic research on zirconium based metal organic frameworks (Zr-MOFs) about immobilization performance at molecular level is still in its initial stage. In this work, UiO-66 was functionalized with various groups (-H, -NH2, -COOH, -OH, -2OH) for the immobilization of cytochrome c (Cyt c) and antioxidant enzyme catalase (CAT). Then the effects of surface-functionalized UiO-66 derivatives on the loading efficiency, enzyme stability and catalysis kinetics were systematically investigated. In addition, the affinity constants of Cyt c and CAT towards UiO-66-series MOFs carriers were also compared. The results have shown that hydroxyl group functionalized UiO-66 represents the highest enzyme loading capacity, enhanced activity and improved stability for Cyt c and CAT possibly due to high surface area and suitable microenvironments as well as enhanced affinity towards the enzymes provided by the introduction of a single hydroxyl group. Our research would foresee immense potential of MOFs in engineering biocatalysts.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Zhao L, Wang Q, Cui X, Li H, Zhao L, Wang Z, Zhou X, Wang X, Ma Z, Pu Q. Assessing the Redox Toxicity of 2D Nanosheets Based on Their Redox Effect on Cytochrome c in Microchannels. Anal Chem 2024; 96:1913-1921. [PMID: 38266028 DOI: 10.1021/acs.analchem.3c04062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gansu Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Qiaoyan Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xiaohu Cui
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gansu Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Xueyan Zhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, P. R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gansu Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
4
|
Kamra A, Das S, Bhatt P, Solra M, Maity T, Rana S. A transient vesicular glue for amplification and temporal regulation of biocatalytic reaction networks. Chem Sci 2023; 14:9267-9282. [PMID: 37712020 PMCID: PMC10498679 DOI: 10.1039/d3sc00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Regulation of enzyme activity and biocatalytic cascades on compartmentalized cellular components is key to the adaptation of cellular processes such as signal transduction and metabolism in response to varying external conditions. Synthetic molecular glues have enabled enzyme inhibition and regulation of protein-protein interactions. So far, all the molecular glue systems based on covalent interactions operated under steady-state conditions. To emulate dynamic biological processes under dissipative conditions, we introduce herein a transient supramolecular glue with a controllable lifetime. The transient system uses multivalent supramolecular interactions between guanidinium group-bearing surfactants and adenosine triphosphate (ATP), resulting in bilayer vesicle structures. Unlike the conventional chemical agents for dissipative assemblies, ATP here plays the dual role of providing a structural component for the assembly as well as presenting active functional groups to "glue" enzymes on the surface. While gluing of the enzymes on the vesicles achieves augmented catalysis, oscillation of ATP concentration allows temporal control of the catalytic activities similar to the dissipative cellular nanoreactors. We further demonstrate temporal upregulation and control of complex biocatalytic reaction networks on the vesicles. Altogether, the temporal activation of biocatalytic cascades on the dissipative vesicular glue presents an adaptable and dynamic system emulating heterogeneous cellular processes, opening up avenues for effective protocell construction and therapeutic interventions.
Collapse
Affiliation(s)
- Alisha Kamra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Manju Solra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| |
Collapse
|
5
|
Liu X, Sun B, Xu C, Zhang T, Zhang Y, Zhu L. Intrinsic mechanisms for the inhibition effect of graphene oxide on the catalysis activity of alpha amylase. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131389. [PMID: 37043854 DOI: 10.1016/j.jhazmat.2023.131389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Comprehending the interactions between graphene oxide (GO) and enzymes is critical for understanding the toxicities of GO. In this study, the inherent interactions of GO with α-amylase as a typical enzyme, and the impacts of GO on the conformation and biological activities of α-amylase were systematically investigated. The results reveal that GO formed ground-state complex with α-amylase primarily via hydrogen bonding and van der Waals interactions, thus quenching the intrinsic fluorescence of the protein statically. Particularly, the strong interactions altered the microenvironment of tyrosine and tryptophan residues, caused rearrangement of polypeptide structure, and reduced the contents of α-helices and β-sheets, thus changing the conformational structure of α-amylase. According to molecular docking results, GO binds with the amino acid residues (i.e., His299, Asp300, and His305) of α-amylase mainly through hydrogen bonding, which is in accordance with in vitro incubation experiments. As a consequence, the ability of α-amylase to catalyze starch hydrolysis into glucose was depressed by GO, suggesting that GO might cause dysfunction of α-amylase. This study discloses the intrinsic binding mechanisms of GO with α-amylase and provides novel insights into the adverse effects of GO as it enters organisms.
Collapse
Affiliation(s)
- Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Chunyi Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
6
|
Zhu M, Zeng L, Li Z, Wang C, Wu L, Jiang X. Revealing the Nanoarchitectonics of Amyloid β-Aggregation on Two-Dimensional Biomimetic Membranes by Surface-Enhanced Infrared Absorption Spectroscopy. ChemistryOpen 2023; 12:e202200253. [PMID: 36744594 PMCID: PMC9906390 DOI: 10.1002/open.202200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
The in vivo folding of amyloid β (Aβ) is influenced by many factors among which biomembrane interfaces play an important role. Here, using surface-enhanced infrared absorption (SEIRA) spectroscopy and atomic force microscopy (AFM), the adsorption, structure, and morphology of Aβ42 aggregating on different two-dimensional interfaces were investigated. Results show that interfaces facilitate the aggregation of Aβ42 and are conducive to the formation of homogeneous aggregates, while the aggregates vary on different interfaces. On hydrophobic interfaces, strong hydrophobic interactions with the C-terminus of Aβ42 result in the formation of small oligomers with a small proportion of the β-sheet structure. On hydrophilic interfaces, hydrogen-bonding interactions and electrostatic interactions promote the formation of large aggregate particles with β-sheet structure. The hydration repulsion plays an important role in the interaction of Aβ42 with interfaces. These findings help to understand the nature of Aβ42 adsorption and aggregation on the biomembrane interface and the origin of heterogeneity and polymorphism of Aβ42 aggregates.
Collapse
Affiliation(s)
- Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Zihao Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Chen Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
7
|
Shen X, Liu R, Wang D. Nanoconfined Electrochemical Collision and Catalysis of Single Enzyme inside Carbon Nanopipettes. Anal Chem 2022; 94:8110-8114. [PMID: 35648840 DOI: 10.1021/acs.analchem.2c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Revealing the electrocatalytic features of single redox enzyme is significant to both fundamental biological processes and practical catalysis and sensing applications. Herein, we directly reveal the electrocatalytic current from a single enzyme inside the carbon nanopipettes via electrochemical collision strategies, based on the increased activity at nanoscale confinement. Besides the staircase current steps from surface blockage, discrete H2O2 oxidation and reduction current transients catalyzed by a single enzyme are also displayed and analyzed. The carbon nanopipette would increase the catalytic activities of enzymes and lead to a detectable current response, thus opening a new way to investigate the fundamental enzymatic mechanisms at the single enzyme level.
Collapse
Affiliation(s)
- Xiaoyue Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Devassy AM, Kamalakshan A, Jamuna NA, Ansilda R, Mandal S. Enhanced Catalytic Activity of a New Nanobiocatalytic System Formed by the Adsorption of Cytochrome c on Pluronic Triblock Copolymer Stabilized MoS 2 Nanosheets. ACS OMEGA 2022; 7:16593-16604. [PMID: 35601299 PMCID: PMC9118411 DOI: 10.1021/acsomega.2c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The formation of nanobiohybrids through the immobilization of enzymes on functional nanomaterials has opened up exciting research opportunities at the nanobiointerfaces. These systems hold great promise for a wide range of applications in biosensing, biocatalytic, and biomedical fields. Here, we report the formation of a hybrid nanobiocatalytic system through the adsorption of cytochrome c (Cyt c) on pluronic triblock copolymer, P123 (PEO-b-PPO-b-PEO), stabilized MoS2 nanosheets. The use of pluronic polymer has helped not only to greatly stabilize the exfoliated MoS2 nanosheets but also to allow easy adsorption of Cyt c on the nanosheets without major structural changes due to its excellent biocompatibility and soft protein-binding property. By comparing the catalytic activity of the Cyt c-MoS2 nanobiohybrid with that of the free Cyt c and as-prepared MoS2 nanosheets, we have demonstrated the active role of the nanobiointeractions in enhancing the catalytic activity of the hybrid. Slight structural perturbation at the active site of the Cyt c upon adsorption on MoS2 has primarily facilitated the peroxidase activity of the Cyt c. As the MoS2 nanosheets and the native Cyt c individually exhibit weaker intrinsic peroxidase activities, their mutual modulation at the nanobiointerface has made the Cyt c-MoS2 a novel nanobiocatalyst with superior activity.
Collapse
Affiliation(s)
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Nidhi Anilkumar Jamuna
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Roselin Ansilda
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
9
|
Chaudhary K, Kumar K, Venkatesu P, Masram DT. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv Colloid Interface Sci 2021; 289:102367. [PMID: 33545443 DOI: 10.1016/j.cis.2021.102367] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Due to the essential role of biological macromolecules in our daily life; it is important to control the stability and activity of such macromolecules. Therefore, the most promising route for enhancement in stability and activity is immobilizing proteins on different support materials. Furthermore, large surface area and surface functional groups are the important features that are required for a better support system. These features of graphene oxide (GO) and reduced graphene oxide (RGO) makes them ideal support materials for protein immobilization. Studies show the successful formation of GO/RGO-protein complexes with enhancement in structural/thermal stability due to various interactions at the nano-bio interface and their utilization in various functional applications. The present review focuses on protein immobilization using GO/RGO as solid support materials. Moreover, we also emphasized on basic underlying mechanism and interactions (hydrophilic, hydrophobic, electrostatic, local protein-protein, hydrogen bonding and van der Walls) between protein and GO/RGO which influences structural stability and activity of enzymes/proteins. Furthermore, GO/RGO-protein complexes are utilized in various applications such as biosensors, bioimaging and theranostic agent, targeted drug delivery agents, and nanovectors for drug and protein delivery.
Collapse
|
10
|
An H, Song J, Wang T, Xiao N, Zhang Z, Cheng P, Ma S, Huang H, Chen Y. Metal–Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. Angew Chem Int Ed Engl 2020; 59:16764-16769. [DOI: 10.1002/anie.202007827] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hongde An
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Jie Song
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Ting Wang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- College of Chemistry Nankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - He Huang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No. 1 Wenyuan Road Nanjing 210046 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
- National Institute for Advanced Materials Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
An H, Song J, Wang T, Xiao N, Zhang Z, Cheng P, Ma S, Huang H, Chen Y. Metal–Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hongde An
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai University Tianjin 300071 China
| | - Jie Song
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai University Tianjin 300071 China
| | - Ting Wang
- College of ChemistryNankai University Tianjin 300071 China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of ChemistryNankai University Tianjin 300071 China
| | - Peng Cheng
- College of ChemistryNankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of ChemistryUniversity of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - He Huang
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University No. 1 Wenyuan Road Nanjing 210046 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai University Tianjin 300071 China
- National Institute for Advanced MaterialsNankai University Tianjin 300071 China
| |
Collapse
|