1
|
Yang C, Yang H, Yao Z, Liu T. Recent advances in active chromophores for detecting gamma-hydroxybutyric acid (GHB)-related illicit drugs. Analyst 2025; 150:1972-1985. [PMID: 40208228 DOI: 10.1039/d5an00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Gamma-hydroxybutyric acid (GHB) and its related illicit drugs are of particular forensic interest owing to their abuse as recreational drugs and implications in drug-facilitated sexual assault. The rapid and complete metabolism of GHB in the body results in a short evidence collection window for forensic experts, and challenges exist in simultaneously differentiating between exogenous addition in spiked drinking and low endogenous levels of GHB. Consequently, the development of real-time and on-site detection strategies for GHB plays vital roles in tackling drug-facilitated crimes. Recently, fluorescent and colorimetric strategies have emerged as promising approaches in this field, offering multiple merits of high sensitivity and specificity, ease of handling, and cumulative signaling effects. This minireview outlines the endogenous levels of GHB in the body and possible metabolism pathways, summarizes the recent advances in active chromophores, elucidates the corresponding sensing characteristics, and then exemplifies the developed sensing strips and detection kits based on the optimized chromophores mostly in the past five years. Additionally, the perspectives of the relevant studies are discussed in detail.
Collapse
Affiliation(s)
- Chun Yang
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China.
| | - Hongxian Yang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, P. R. China
| | - Zhen Yao
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
2
|
Udhayakumari D, Duraisamy D, Nanthakumar A. PET Coordination Mechanism for the Detecting of Environmental Toxic Analytes: Current Approaches and Future Directions. J Fluoresc 2025:10.1007/s10895-025-04237-7. [PMID: 40072732 DOI: 10.1007/s10895-025-04237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Fluorescence-based photoinduced electron transfer (PET) has garnered significant attention in the molecular recognition field in recent years because of its unique and desirable photophysical properties. Recent advancements in PET-based chemosensors have demonstrated their potential for real-time monitoring of pollutants such as heavy metals, pesticides, and organic contaminants in various environmental matrices. This review emphasizes the recent advancements in fluorogenic and chromogenic PET-based chemosensors based on Anthracene, Imidazole, Indole, Pyrrole, Thiazole, Naphthalene, Quinoline, Calix[4]arene, Fluorescein, Quantum Dots, Schiff base compounds and also focusing on their molecular design, sensing mechanisms, and photophysical properties reported from the year 2011 to 2024.
Collapse
Affiliation(s)
| | - Dhayanithi Duraisamy
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - A Nanthakumar
- Department of English, Easwari Engineering College, Chennai, India
| |
Collapse
|
3
|
Feng J, Chang H, Zhou X, Zhang S, Ding L, Liu T, Fang Y. Manipulating Constitutional Isomerism of Imine Linkages in Interfacially Confined Nanofilms toward Enhanced Fluorescence Sensing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39981731 DOI: 10.1021/acsami.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photoluminescence efficiencies of covalent organic frameworks (COFs) are significantly restricted by electron delocalization and charge transfer among the conjugated skeletons. Two nanofilms using tetraphenylethylene and benzo[c][1,2,5]thiadiazole as the building blocks were facilely prepared via an interfacially confined condensation strategy. The distinct dipole moment orientations of imine linkages are involved in the π-delocalization of conjugated donor-acceptor systems diversely. They also played critical roles in affecting the fluorescence turn-on sensing of the obtained nanofilms for gaseous trifluoroacetic acid (TFA). The joint donor-C═N-acceptor sequence in nanofilm #2 resulted in relatively stronger fluorescence originally than that of nanofilm #1, featuring the disturbed donor-N═C-acceptor sequence. While after blowing trace TFA, the latter nanofilm #1 possessed prominent fluorescence enhancement and obvious color visualization. Comparative transient absorption observations and theoretical calculations elucidated the effective manipulation of the intramolecular charge transfer (ICT) efficiencies among the imine-linked functional skeletons. With the help of a laminated fluorescent sensor, a compact sensing platform was further integrated using optimized nanofilm #1. It exhibited good selectivity, excellent reversibility (≥50 recycles), an extraordinary detection limit (∼0.1 ppt), and a rapid recovery process to gaseous TFA. Our findings provide valuable optimizations of π-linkages in COFs and reliable fluorescent film sensors for monitoring toxic and hazardous gases.
Collapse
Affiliation(s)
- Jiang Feng
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haixia Chang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xingtong Zhou
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Liping Ding
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
4
|
Yao J, Yang C, Wen R, Liu T, Ding L, Yao Z, Fang Y. Integrated Sensing Platform Validated for the Efficient and On-Site Screening of Amine-Containing Illicit Drugs. ACS Sens 2024; 9:4608-4616. [PMID: 39116022 DOI: 10.1021/acssensors.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Efficient and reliable technologies for the on-site detection of illicit drugs are important in drug-facilitated crime investigations. However, the development of such technologies is challenging. Based on the synthetic optimization, introducing a boron ester functional group to the two furanic indicators endows the stimulus-responsive properties synergistically. The ring-opening reaction of the indicators in the presence of amine-containing illicit drugs generated well-known donor-acceptor Stenhouse adducts, accompanied by strong color changes. A small-size and lightweight laminated sensor was integrated based on the outstanding ratiometric variations of the two active furanic indicators. A prototype platform was fabricated equipped with a circuit control, a mini pump, and a signal processing system. A user-friendly detection and efficient screening of amine-containing illicit drugs, including phenethylamines, amphetamines, cathinones, and tryptamines in the liquid states were conducted. The ratiometric response of the sensor was linear in the concentration range of 2.1-10.6 μg·mL-1 for methamphetamine·HCl and methcathinone ·HCl. The detection limits for the two illicit drugs at the sublevel (ng·mL-1) were found to be 8.4 and 9.0 ng·mL-1, respectively. Double-blind field tests and different illicit drugs were evaluated with good screening capability. Successful trials showed the potential applications of the developed prototype platform for efficient and on-site analytical determination.
Collapse
Affiliation(s)
- Jiashuang Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chun Yang
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China
| | - Ruijuan Wen
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhen Yao
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
5
|
Udhayakumari D, Ramasundaram S, Jerome P, Oh TH. A Review on Small Molecule Based Fluorescence Chemosensors for Bioimaging Applications. J Fluoresc 2024:10.1007/s10895-024-03826-2. [PMID: 38990455 DOI: 10.1007/s10895-024-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
This review provides a thorough examination of small molecule-based fluorescence chemosensors tailored for bioimaging applications, showcasing their unique ability to visualize biological processes with exceptional sensitivity and selectivity. It explores recent advancements, methodologies, and applications in this domain, focusing on various designs rooted in anthracene, benzothiazole, naphthalene, quinoline, and Schiff base. Structural modifications and molecular engineering strategies are emphasized for enhancing sensor performance, including heightened sensitivity, selectivity, and biocompatibility. Additionally, the review offers valuable insights into the ongoing development and utilization of these chemosensors, addressing current challenges and charting future directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
6
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
7
|
Pal A, Dey N. Surfactant-induced alterations in optoelectronic properties of perylene diimide dyes: modulating sensing responses in the aqueous environment. SOFT MATTER 2024; 20:3044-3052. [PMID: 38525678 DOI: 10.1039/d3sm01694c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The compartmentalization effect of microheterogeneous systems, like surfactant aggregates, showcases altered optoelectronic properties of a perylene diimide-based chromogenic dye (PDI-Ala) compared to bulk water. The relatively hydrophobic microenvironment, poor hydration, and exceptionally large local concentration of dye molecules in the confined environment affect their interaction with target analytes. This realization intrigued us to investigate if micellization can modify the sensing properties (selectivity, sensitivity, response kinetics, output signal, etc.) of the encapsulated dye molecules in the aqueous medium. Response comparisons of PDI-Ala to the ionic analyte (Fe3+) and biomolecule (heparin) in aqueous and surfactant-bound states highlighted significant variations. Fe3+ interaction exhibited a "turn-off" fluorescence response in a water medium, while surfactant-bound conditions triggered "turn-on" fluorescence, enhancing selectivity at the micelle-water interface. Conversely, the native probe showed no interaction with heparin in water but displayed a turn-on fluorescence response in cetyltrimethylammonium bromide (CTAB) micelles, indicating the transformation of a silent molecule into a turn-on fluorescence sensor. This study underscores the influence of micellar environments on dye molecules, altering the sensing responses and selectivity toward analytes, crucial for applications in understanding cellular pathways and toxicity mechanisms.
Collapse
Affiliation(s)
- Animesh Pal
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India.
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
8
|
Jimenez JAM, Egan J, Randle RI, Rezig AO, Orimolade BO, Ginesi RE, Schweins R, Riehle MO, Draper ER. Tuning conductivity while maintaining mechanical properties in perylene bisimide hydrogels at physiological pH. Chem Commun (Camb) 2024; 60:3027-3030. [PMID: 38385307 DOI: 10.1039/d3cc04557a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
By using different salts as a method to achieve gelation of two different amino-acid-functionalised perylene bisimides, we were able to tune reduction potentials while maintaining the mechanical and optical properties of the system all at pH 7.4.
Collapse
Affiliation(s)
- Juan Antonio Mena Jimenez
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK.
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071, Spain
| | - Jacquelyn Egan
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK.
| | - Rebecca I Randle
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK.
| | - Amina Omelbanine Rezig
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK.
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | | | - Rebecca E Ginesi
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK.
| | - Ralf Schweins
- Institut Laue-Langevin, Large Scale Structures Group, 71 Avenue des Martyrs, CS 20156, F-38042, Grenoble, Cedex 9, France
| | - Mathis O Riehle
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Emily R Draper
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Liu L, Li S, Luo W, Yao J, Liu T, Qin M, Huang Z, Ding L, Fang Y. Compact device prototype for turn-on fluorescence detection of sarin based on reactive 4,4-diaryloxy-BODIPY derivatives. SENSORS & DIAGNOSTICS 2024; 3:1651-1658. [DOI: 10.1039/d4sd00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
4,4-Diaryloxy-BODIPYs were presented for fluorescence turn-on detection of sarin in solution media. A compact tubular sensor and a sensing platform prototype were fabricated for in situ detection of real agents and simulants at the sub-mM level.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Sheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wendan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiashuang Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhiyan Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
10
|
Chen M, Chu R, Kistemaker JCM, Burn PL, Gentle IR, Shaw PE. Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56386-56396. [PMID: 37982219 DOI: 10.1021/acsami.3c10797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescence-based sensing has been demonstrated to be a powerful method for rapid trace detection of chemical vapors (analytes). Analyte diffusion has been shown to be the critical factor for real-time luminescence-based detection of explosive analytes via photoinduced electron transfer in amorphous films of conjugated polymers and dendrimers. However, similar studies to determine the critical factors for sensing have not been performed on materials that employ photoinduced hole transfer (PHT) to detect low electron affinity analytes such as illicit drugs. Nor have such studies been performed on semicrystalline sensing films. We have developed a family of perylene diimide-based sensing materials capable of undergoing PHT with amine-group containing analytes. It was found that the choice of branched alkyl chain [1-hexylheptyl (PHH), 2-hexyloctyl (PHO), or 2,2-dihexyloctyl (PDHO)] attached to the nitrogen atoms of the imide moiety strongly affected the solution-processed film morphology. PHH and PHO were found to contain crystalline phases, whereas PDHO was essentially amorphous. The degree of crystallinity strongly influenced exciton diffusion, with PHH and PHO exhibiting exciton diffusion coefficients that were 20× and 10× greater than the value of the amorphous PDHO. The degree of film crystallinity was also found to be critical when the films were applied to detect N-methylphenethylamine (MPEA), a simulant of methamphetamine. While PHH had the largest exciton diffusion coefficient [(1.0 ± 0.2) × 10-2 cm2 s-1] and analyte uptake (12.3 ± 1.8 ng) it showed the smallest quenching efficiency (2.6% ng-1). In contrast, PHO, which sorbed the least analyte (6.1 ± 0.4 ng) of the three compounds, had the largest quenching efficiency (7.1% ng-1) due to its molecular packing and hence exciton diffusion coefficient [(4.5 ± 1.4) × 10-3 cm2 s-1] not being affected by sorption of the analyte. These results show that when applying fluorescent films in practical detection scenarios there is a potential trade-off between a high exciton diffusion constant and analyte diffusion for semicrystalline sensing materials and that a high exciton diffusion coefficient in an as-cast film does not necessarily translate into a more efficient fluorescent quenching. The results also show that sensing materials that form semicrystalline films, whose packing is not disrupted by analyte diffusion, provide a route for overcoming these effects and achieving high sensitivity.
Collapse
Affiliation(s)
- Ming Chen
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Ronan Chu
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Jos C M Kistemaker
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| |
Collapse
|
11
|
Potter M, Debnath S, Drover MW, Rondeau-Gagné S, Mutus B. An Azomethine-H-Based Fluorogenic Sensor for Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43880-43886. [PMID: 37671912 DOI: 10.1021/acsami.3c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Formic acid (FA) is an important C1-containing feedstock that serves as a masked source of dihydrogen gas (H2). To encourage the adoption of cleaner (noncarbonaceous) energy sources, FA detection and sensing is thus of considerable interest. Here, we examine the use of a commercially available dye, azomethine-H (Az-H), for FA sensing. Solution studies confirm that FA quenches both the absorbance and the luminescence properties of Az-H. FA was additionally found to attenuate a known Az-H (E)-to-(Z) conformational change, suggesting an Az-H/FA interaction, possibly through hydrogen bonding; this phenomenon was probed using 1H NMR spectroscopy. Moving toward a solid-state sensor, the Az-H probe was incorporated into a gelatin-based matrix. On exposure to FA, the luminescence of this system was found to increase in a FA-dependent manner, attributed to the formation of stable hydrogen-bonded structures, facilitating a (Z)-to-(E) isomerization via imine protonation, allowing for production of the more luminescent (E)-isomer. This fluorogenic signal was used as a FA sensor with an estimated detection limit of ca. 0.4 ppb FA vapor. This work constitutes an important step toward a highly sensitive FA sensor in both the solution and solid state, opening new space for the detection of organic acids in differing chemical environments.
Collapse
Affiliation(s)
- Mark Potter
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Suman Debnath
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
12
|
Chen M, Burn PL, Shaw PE. Luminescence-based detection and identification of illicit drugs. Phys Chem Chem Phys 2023; 25:13244-13259. [PMID: 37144605 DOI: 10.1039/d3cp00524k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Luminescence-based sensing is capable of being used for the sensitive, rapid, and in some cases selective detection of chemicals. Furthermore, the method is amenable to incorporation into handheld low-power portable detectors that can be used in the field. Luminescence-based detectors are now commercially available for explosive detection with the technology built on a strong foundation of science. In contrast, there are fewer examples of luminescence-based detection of illicit drugs, despite the pervasive and global challenge of combating their manufacture, distribution and consumption and the need for handheld detection systems. This perspective describes the relatively nascent steps that have been reported in the use of luminescent materials for the detection of illicit drugs. Much of the published work has focused on detection of illicit drugs in solution with less work on vapour detection using thin luminescent sensing films. The latter are better suited for handheld sensing devices and detection in the field. Illicit drug detection has been achieved via different mechanisms, all of which change the luminescence of the sensing material. These include photoinduced hole transfer (PHT) leading to quenching of the luminescence, disruption of Förster energy transfer between different chromophores by a drug, and chemical reaction between the sensing material and a drug. The most promising of these is PHT, which can be used for rapid and reversible detection of illicit drugs in solution and film-based sensing of drugs in the vapour phase. However, there are still significant knowledge gaps, for example, how vapours of illicit drugs interact with the sensing films, and how to achieve selectivity for specific drugs.
Collapse
Affiliation(s)
- M Chen
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - P L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - P E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
13
|
Wang Z, Liu T, Peng H, Fang Y. Advances in Molecular Design and Photophysical Engineering of Perylene Bisimide-Containing Polyads and Multichromophores for Film-Based Fluorescent Sensors. J Phys Chem B 2023; 127:828-837. [PMID: 36692385 DOI: 10.1021/acs.jpcb.2c07815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
14
|
Schiff Bases: A Versatile Fluorescence Probe in Sensing Cations. J Fluoresc 2023; 33:859-893. [PMID: 36633727 DOI: 10.1007/s10895-022-03135-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
Metal cations such as Zn2+, Al3+, Hg2+, Cd2+, Sn2+, Fe2+, Fe3+ and Cu2+ play important roles in biology, medicine, and the environment. However, when these are not maintained in proper concentration, they can be lethal to life. Therefore, selective sensing of metal cations is of great importance in understanding various metabolic processes, disease diagnosis, checking the purity of environmental samples, and detecting toxic analytes. Schiff base probes have been largely used in designing fluorescent sensors for sensing metal ions because of their easy processing, availability, fast response time, and low detection limit. Herein, an in-depth report on metal ions recognition by some Schiff base fluorescent sensors, their sensing mechanism, their practical applicability in cell imaging, building logic gates, and analysis of real-life samples has been presented. The metal ions having biological, industrial, and environmental significance are targeted. The compiled information is expected to prove beneficial in designing and synthesis of the related Schiff base fluorescent sensors.
Collapse
|
15
|
Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R. Fluorescent Sensing of Glutathione and Related Bio-Applications. BIOSENSORS 2022; 13:16. [PMID: 36671851 PMCID: PMC9855688 DOI: 10.3390/bios13010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays significant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the most serious diseases to threaten public health. As it is clear that much more concentrated GSH is present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments, effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well. In this review, we focus on the fluorescent methodologies for GSH detection, since they can be conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then, the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent GSH sensing-in particular, fluorescent GSH-sensing-prompted disease diagnosis-are addressed.
Collapse
|
16
|
Perylene bisimide-based nanocubes for selective vapour phase ultra-trace detection of aniline derivatives. Anal Chim Acta 2022; 1238:340632. [DOI: 10.1016/j.aca.2022.340632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
17
|
Butnaru I, Constantin CP, Damaceanu MD. Optimization of triphenylamine-based polyimide structure towards molecular sensors for selective detection of heavy/transition metal ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Zhang D, Zhu L, Jiang Q, Ge X, Fang Y, Peng J, Liu Y. Real-time and Rapid Prediction of TVB-N of Livestock and Poultry Meat at Three Depths for Freshness Evaluation using a Portable Fluorescent Film Sensor. Food Chem 2022; 400:134041. [DOI: 10.1016/j.foodchem.2022.134041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
19
|
Jiang Q, Wang Z, Wang G, Liu K, Xu W, Shang C, Gou X, Liu T, Fang Y. A Configurationally Tunable Perylene Bisimide Derivative‐based Fluorescent Film Sensor for the Reliable Detection of Volatile Basic Nitrogen towards Fish Freshness Evaluation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingwei Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
- School of Materials Science and Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Congdi Shang
- School of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
- School of Materials Science and Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| |
Collapse
|
20
|
Soufi G, Bagher H, Yeganeh Rad L, Minaeian S. Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath. Anal Chim Acta 2022; 1198:339550. [DOI: 10.1016/j.aca.2022.339550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
21
|
Geringer E, Gerhard M, Dehnen S. Introducing Distinct Structural and Optical Properties into Organotin Sulfide Clusters by the Attachment of Perylenyl and Corannulenyl Groups. Inorg Chem 2021; 60:19381-19392. [PMID: 34872245 DOI: 10.1021/acs.inorgchem.1c03206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the introduction of distinct optical properties into organotin sulfide clusters by the attachment of extended polycyclic aromatic organic molecules. This was realized by the reactions of [(RNSn)4S6] (RN = CMe2CH2CMeNNH2) with 3-perylenecarbaldehyde and corannulenecarbaldehyde, respectively. The reaction with the first reactant leads to the formation of two products [(RperylSn)3S4][SnCl3] [1a; Rperyl = CMe2CH2CMeNNCH(C20H11)] and [(RperylSn)3S4Cl] (1b). Structural differences between these two compounds are reflected in their different optical absorption and luminescence behavior, yet in both cases, the main emission is red-shifted relative to 3-perylenecarbaldehyde. The second organic molecule affords the compound [(RcorSn)4Sn2S10] [2; Rcor = CMe2CH2CMeNNCH(C20H9)] with intriguing optical properties, including a broad emission with essentially no shift in λmax compared to corannulenecarbaldehyde. All compounds were obtained as single crystals, and their structures were determined by means of single-crystal X-ray diffraction. The optical properties of the highly luminescent compounds were investigated by means of emission and time-resolved photoluminescence spectroscopy measurements.
Collapse
Affiliation(s)
- Eugenie Geringer
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Marina Gerhard
- Department of Physics and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Renthof 5, Marburg 35032, Germany
| | - Stefanie Dehnen
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| |
Collapse
|
22
|
Orthogonal carbazole-perylene bisimide pentad: a photoconversion-tunable photosensitizer with diversified excitation and excited-state relaxation pathways. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Chang X, Wang Z, Wang G, Liu T, Lin S, Fang Y. Perylene Bisimide-Cored Supramolecular Coordination Complexes: Interplay between Ensembles, Excited State Processes, and Aggregation Behaviors. Chemistry 2021; 27:14876-14885. [PMID: 34462989 DOI: 10.1002/chem.202101970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle (2) and a trigonal prism (3) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3 )2 Pt(OTf)2 -based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI (1), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2, however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
24
|
A Novel Imidazole Bound Schiff Base as Highly Selective "Turn-on" Fluorescence Sensor for Zn 2+ and Colorimetric Kit for Co 2. J Fluoresc 2021; 32:189-202. [PMID: 34687395 DOI: 10.1007/s10895-021-02839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
An imidazole based Schiff base (2-[(1H-imidazole-2-ylmethylene)-amino]-4-methyl-phenol) (IMP), with an imine unit, has been designed and characterized by various standard methods. The evaluation of the probe as a fluorogenic sensor for Zn2+ and a chromogenic sensor for Co2+ has been rationalized in terms of the PET mechanism. In the presence of Zn2+, a light yellow colored solution of IMP with maximum absorption of 364 nm becomes bright yellow with maximum absorption of 410 nm and a measurable fluorescent signal at 612 nm with bathochromic enhancement. The sensitivity of the fluorescent based assay (6.78 × 10-9 M) for Zn2+ is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.6 × 10-5 M) and therefore it is capable of being a practical system for the monitoring of Zn2+ concentrations in aqueous samples. Moreover, IMP showed a highly selective colorimetric response to Co2+ by displayed an obvious pink color upon addition of metal solution immediately without any interference from other ions. These results provide a new approach for selectively recognizing the two most important trace elements in the human body simultaneously, for Zn2+ by emission spectra and Co2+ by the naked eye.
Collapse
|
25
|
Feng W, Liu K, Zang J, Xu J, Peng H, Ding L, Liu T, Fang Y. Resonance-Enhanced Two-Photon Absorption and Optical Power Limiting Properties of Three-Dimensional Perylene Bisimide Derivatives. J Phys Chem B 2021; 125:11540-11547. [PMID: 34636571 DOI: 10.1021/acs.jpcb.1c07296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Push-pull organic structures characterized by an intramolecular charge transfer (ICT) process and π-electron delocalization are potentially interesting luminescent materials. A series of three-dimensional o-carborane-containing perylene bisimide derivatives (PBIs) were synthesized, and their optical properties were systematically investigated to illustrate the stereo effect, especially on the two-photon absorption (2PA) and optical power limiting (OPL) properties. Open-aperture Z-scan curves showed that all four PBIs displayed strong and broad two-photon absorptivities based on the resonance-enhanced phenomenon. The maximum degenerate two-photon absorption cross section (δ2PA) increased with the number of PBI substituents. The derivative CB-PBI possessed a δ2PA value of ∼2400 GM at 650 nm, a significant enhancement in comparison with that of the parent PBI (∼719 GM), ascribed to the present stereo effect. When the aromatic-donating units changed from naphthyl and pyrenyl to PBI, the generated multidimensional intramolecular charge transfer (ICT) from the aromatic units to the o-carborane cage contributed to the 2PA processes. All of the fluorophores exhibited excellent optical power limiting (OPL) performances as well as a minimum limiting threshold of ∼4.98 mJ/cm2 for CB-PBI. These significant results not only allow us to get deep insight into the nature of the fundamental stereo effect and nonlinear optical (NLO) response involved but also guide us toward the design of new multifunctional luminescent materials.
Collapse
Affiliation(s)
- Wan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiale Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
26
|
Zhou W, Liu G, Yang B, Ji Q, Xiang W, He H, Xu Z, Qi C, Li S, Yang S, Xu C. Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146483. [PMID: 33773344 DOI: 10.1016/j.scitotenv.2021.146483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Environment pollution is getting serious and various poisonous contaminants with chemical durability, biotoxicity and bioaccumulation have been widespreadly discovered in municipal wastewaters and surface water. The detection and removal of pollutants show great significance for the protection of human health and other organisms. Due to its distinctive physical and chemical properties, perylene diimide (PDI) has received widespread attention from different research fields, especially in the area of environment. In this review, a comprehensive summary of the development of PDI-based materials in fluorescence detection and advanced oxidation technology for environment was introduced. Firstly, we chiefly presented the recent progress about the synthesis of PDI and PDI-based nanomaterials. Then, their application in fluorescence detection for environment was presented and categorized, principally including the detection of heavy metal ions, harmful anions and organic contaminants in the environment. In addition, the application of PDI and PDI-based materials in different advanced oxidation technologies for environment, such as photocatalysis, photoelectrocatalysis, Fenton and Fenton-like reaction and persulfate activation, was also summarized. At last, the challenges and future prospects of PDI-based materials in environmental applications were discussed. This review focuses on presenting the practical applications of PDI and PDI-based materials as fluorescent probes or catalysts (especially photocatalysts) in the detection of hazardous substances or catalytic elimination of organic contaminants. The contents are aimed at supplying the researchers with a deeper understanding of PDI and PDI-based materials and encouraging their further development in environmental applications.
Collapse
Affiliation(s)
- Wenwu Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bing Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiuyi Ji
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Weiming Xiang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhe Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shiyin Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chenmin Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
27
|
Zhang M, Ding N, Lai F, Shang C, Miao R, Liu Z, Fang Y. Nonplanar Perylene
Monoimide‐Based
Fluorescent Film for Enhanced
BTX
Sensing. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Meiling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
- School of Materials Science and Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Nannan Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Fayan Lai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| |
Collapse
|
28
|
Zhang J, Liu K, Liu Z, Wang Z, Hua C, Liu T, Fang Y. High-Performance Ketone Sensing in Vapor Phase Enabled by o-Carborane-Modified Cyclometalated Alkynyl-Gold(III) Complex-Based Fluorescent Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5625-5633. [PMID: 33486950 DOI: 10.1021/acsami.0c21424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of high-performance, low-power-consumption, small-sized detectors is a key issue for fabricating specific miniaturized chromatographs (GCs). Herein, we report, for the first-time, utilization of a film-based fluorescent sensor as a GC detector. In the studies, we designed a new o-carborane derivative of a known cyclometalated alkynyl-gold(III) complex, Au-CB. Unlike the parent gold(III) complex, the newly synthesized Au-CB depicted a remarkable aggregation-induced emission (AIE) property, enabling fabrication of a fluorescent film. The film emission is highly sensitive to the presence of ketones such as acetone, 2-pentanone, 3-pentanone, cyclopentanone, etc., in the air. It was demonstrated that the sensing performance of the film could be further improved by changing the film from a planar structure to a tubular one. Via combination with an earlier reported homemade sensory device, a conceptual film-based fluorescent sensor was developed, which demonstrated instant and fully reversible response to the ketones. The experimental detection limits for cyclohexanone and acetone could be lower than 0.08 and 13.0 ppm, respectively. Moreover, the sensor is super stable, as 24 h continuous illumination resulted in less than 1.0% reduction of the fluorescence emission, 50 successive sensings showed no observable decay in the performance, and more than 1 year of storage had no effect upon the property. Further studies demonstrated that the film sensor could be used as a GC detector with performance comparable to the commercial flame ionization detector (FID), which lays the foundation for future applications in specific miniaturized GCs because of its merits in size, power consumption, carrier gas, etc.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chunxia Hua
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
29
|
Abstract
Perylene imide (PI) molecules and materials have been extensively studied for optical chemical sensors, particularly those based on fluorescence and colorimetric mode, taking advantage of the unique features of PIs such as structure tunability, good thermal, optical and chemical stability, strong electron affinity, strong visible light absorption and high fluorescence quantum yield. PI-based optical chemosensors have now found broad applications in gas phase detection of chemicals, including explosives, biomarkers of some food and diseases (such as organic amines (alkylamines and aromatic amines)), benzene homologs, organic peroxides, phenols and nitroaromatics, etc. In this review, the recent research on PI-based fluorometric and colorimetric sensors, as well as array technology incorporating multiple sensors, is reviewed along with the discussion of potential applications in environment, health and public safety areas. Specifically, we discuss the molecular design and aggregate architecture of PIs in correlation with the corresponding sensor performances (including sensitivity, selectivity, response time, recovery time, reversibility, etc.). We also provide a perspective summary highlighting the great potential for future development of PIs optical chemosensors, especially in the sensor array format that will largely enhance the detection specificity in complexed environments.
Collapse
|
30
|
Pramanik B, Das S, Das D. Aggregation-directed High Fidelity Sensing of Picric Acid by a Perylenediimide-based Luminogen. Chem Asian J 2020; 15:4291-4296. [PMID: 33137228 DOI: 10.1002/asia.202001184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/09/2022]
Abstract
Widespread use of picric acid (PA) in chemical industries and deadly explosives poses dreadful impact on all living creatures as well as the natural environment and has raised global concerns that necessitate the development of fast and efficient sensing platforms. To address this issue, herein, we report a perylenediimide-peptide conjugate, PDI-1, for detection of PA in methanol. The probe displays typical aggregation caused quenching (ACQ) behaviour and exhibits a fluorescence "turn-off" sensory response towards PA which is unaffected by the presence of other interfering nitroaromatic compounds. The sensing mechanism involves PA induced aggregation of the probe into higher order tape like structures which leads to quenching of emission. The probe possesses a low detection limit of 5.6 nM or 1.28 ppb and a significantly high Stern-Volmer constant of 6.87×104 M-1 . It also exhibits conducting properties in the presence of PA vapours and thus represents a prospective candidate for vapour phase detection of PA. This is, to the best of our knowledge, the first example of a perylenediimide based probe that demonstrates extremely specific, selective and sensitive detection of PA and thus grasps the potential for application in practical scenarios.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India.,Present address: Department of Chemistry, Ben-Gurion University of Negev, Beer Sheva, 84105, Israel
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
31
|
Jiang Q, Sun H, Zhao D, Zhang F, Hu D, Jiao F, Qin L, Linseis V, Fabiano S, Crispin X, Ma Y, Cao Y. High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002752. [PMID: 32924214 DOI: 10.1002/adma.202002752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Low-cost, non-toxic, abundant organic thermoelectric materials are currently under investigation for use as potential alternatives for the production of electricity from waste heat. While organic conductors reach electrical conductivities as high as their inorganic counterparts, they suffer from an overall low thermoelectric figure of merit (ZT) due to their small Seebeck coefficient. Moreover, the lack of efficient n-type organic materials still represents a major challenge when trying to fabricate efficient organic thermoelectric modules. Here, a novel strategy is proposed both to increase the Seebeck coefficient and achieve the highest thermoelectric efficiency for n-type organic thermoelectrics to date. An organic mixed ion-electron n-type conductor based on highly crystalline and reduced perylene bisimide is developed. Quasi-frozen ionic carriers yield a large ionic Seebeck coefficient of -3021 μV K-1 , while the electronic carriers dominate the electrical conductivity which is as high as 0.18 S cm-1 at 60% relative humidity. The overall power factor is remarkably high (165 μW m-1 K-2 ), with a ZT = 0.23 at room temperature. The resulting single leg thermoelectric generators display a high quasi-constant power output. This work paves the way for the design and development of efficient organic thermoelectrics by the rational control of the mobility of the electronic and ionic carriers.
Collapse
Affiliation(s)
- Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Hengda Sun
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Duokai Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fengling Zhang
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-58183, Sweden
| | - Dehua Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Jiao
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Leiqiang Qin
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-58183, Sweden
| | - Vincent Linseis
- Institute of Nanostructure and Solid State Physics, University Hamburg, Hamburg, 20355, Germany
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
32
|
Udhayakumari D, Inbaraj V. A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J Fluoresc 2020; 30:1203-1223. [PMID: 32737660 DOI: 10.1007/s10895-020-02570-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
Fluorescent determinations of analytes have proven to be a powerful method due to their simplicity, low cost, detection limit, rapid photoluminescence response, and applicability to bioimaging. Fluorescence imaging as a powerful tool for monitoring biomolecules within the living systems. Schiff base has been extensively used as strongly absorbing and colorful chromophores in the design of chemosensors. In recent years, Schiff base based fluorescent probes have been developed for the detection of various toxic analytes and imaging of various analytes in biological systems. This review gives an overview of the important fluorescent sensors which are based on Schiff base, their approaches for molecular recognition, and their potential application in bioimaging studies.
Collapse
Affiliation(s)
| | - V Inbaraj
- Department of Chemistry, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|