1
|
McKenzie TJ, Brunet T, Kissell LN, Strobbia P, Ayres N. Polydimethylsiloxane Polymerized Emulsions for Acoustic Materials Prepared Using Reactive Triblock Copolymer Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58917-58930. [PMID: 38063480 DOI: 10.1021/acsami.3c14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion-templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition-fragmentation chain transfer polymerizations to control the emulsion template and act as an additional cross-linker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Thomas Brunet
- Institut de Mécanique et d'Ingénierie, University of Bordeaux─CNRS─Bordeaux INP, Talence 33405, France
| | - Lyndsay N Kissell
- Department of Chemistry, University of Cincinnati, 201 Crosley Tower, 301 Clifton Ct, Cincinnati, Ohio 45221, United States
| | - Pietro Strobbia
- Department of Chemistry, University of Cincinnati, 201 Crosley Tower, 301 Clifton Ct, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
2
|
McKenzie T, Ayres N. Synthesis and Applications of Elastomeric Polymerized High Internal Phase Emulsions (PolyHIPEs). ACS OMEGA 2023; 8:20178-20195. [PMID: 37323392 PMCID: PMC10268022 DOI: 10.1021/acsomega.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Polymer foams (PFs) are among the most industrially produced polymeric materials, and they are found in applications including aerospace, packaging, textiles, and biomaterials. PFs are predominantly prepared using gas-blowing techniques, but PFs can also be prepared from templating techniques such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPEs have many experimental design variables which control the physical, mechanical, and chemical properties of the resulting PFs. Both rigid and elastic polyHIPEs can be prepared, but while elastomeric polyHIPEs are less commonly reported than hard polyHIPEs, elastomeric polyHIPEs are instrumental in the realization of new materials in applications including flexible separation membranes, energy storage in soft robotics, and 3D-printed soft tissue engineering scaffolds. Furthermore, there are few limitations to the types of polymers and polymerization methods that have been used to prepare elastic polyHIPEs due to the wide range of polymerization conditions that are compatible with the polyHIPE method. In this review, an overview of the chemistry used to prepare elastic polyHIPEs from early reports to modern polymerization methods is provided, focusing on the applications that flexible polyHIPEs are used in. The review consists of four sections organized around polymer classes used in the preparation of polyHIPEs: (meth)acrylics and (meth)acrylamides, silicones, polyesters and polyurethanes, and naturally occurring polymers. Within each section, the common properties, current challenges, and an outlook is suggested on where elastomeric polyHIPEs can be expected to continue to make broad, positive impacts on materials and technology for the future.
Collapse
Affiliation(s)
| | - Neil Ayres
- N.A.:
email, ; tel, +01 513 556 9280; fax, +01 513 556 9239
| |
Collapse
|
3
|
McKenzie TJ, Cawood C, Davis C, Ayres N. Synthesis of patterned polyHIPE-hydrogel composite materials using thiol-ene chemistry. J Colloid Interface Sci 2023; 645:502-512. [PMID: 37159992 DOI: 10.1016/j.jcis.2023.04.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Elastomeric materials combining multiple properties within a single composite are highly desired in applications including biomaterials interfaces, actuators, and soft robotics. High spatial resolution is required to impart different properties across the composite for the intended application, but many techniques used to prepare these composites rely on multistep and complex methods. There is a need for the development of simple and efficient platforms to design layered composite materials. Here, we report the synthesis of horizontally- and vertically-patterned composites consisting of PDMS-based polymerized high internal phase emulsion (polyHIPE) porous elastomers and PDMS/PEG hydrogels. Composites with defined interfaces that were mechanically robust were prepared, and rheological analysis of the polyHIPE and hydrogel layers showed storage moduli values of ∼ 35 kPa and 45 kPa respectively. The compressive Young's Modulus and maximum strain of the polyHIPEs were dependent on the thiol to ene ratio in the formulation and obtained values ranging from 6 to 25 kPa and 50-65% respectively. The mechanical properties, total porosity of the polyHIPE, and swelling ratio of the hydrogel were unaffected by the patterning technique compared to non-patterned controls. PolyHIPE-hydrogel composite materials having up to 7-different horizontally pattered layers could be prepared that could expand and contract up hydration and drying.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Christian Cawood
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Chelsea Davis
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States.
| |
Collapse
|
4
|
Smith A, Ayres N. Open-cell PDMS polyHIPEs prepared using polymethylvinylsiloxane to prevent pore collapse. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Krizhanovskiy I, Temnikov M, Kononevich Y, Anisimov A, Drozdov F, Muzafarov A. The Use of the Thiol-Ene Addition Click Reaction in the Chemistry of Organosilicon Compounds: An Alternative or a Supplement to the Classical Hydrosilylation? Polymers (Basel) 2022; 14:polym14153079. [PMID: 35956590 PMCID: PMC9370781 DOI: 10.3390/polym14153079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
This review presents the main achievements in the use of the thiol-ene reaction in the chemistry of silicones. Works are considered, starting from monomers and ending with materials.The main advantages and disadvantages of this reaction are demonstrated using various examples. A critical analysis of the use of this reaction is made in comparison with the hydrosilylation reaction.
Collapse
Affiliation(s)
- Ilya Krizhanovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Maxim Temnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Yuriy Kononevich
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Anton Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Correspondence: (A.A.); (A.M.)
| | - Fedor Drozdov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
- Correspondence: (A.A.); (A.M.)
| |
Collapse
|
6
|
McKenzie TJ, Smail S, Rost K, Rishi K, Beaucage G, Ayres N. Multi-layered polymerized high internal phase emulsions with controllable porosity and strong interfaces. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
|
8
|
Cook CC, Fong EJ, Schwartz JJ, Porcincula DH, Kaczmarek AC, Oakdale JS, Moran BD, Champley KM, Rackson CM, Muralidharan A, McLeod RR, Shusteff M. Highly Tunable Thiol-Ene Photoresins for Volumetric Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003376. [PMID: 33002275 DOI: 10.1002/adma.202003376] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Indexed: 05/17/2023]
Abstract
Volumetric additive manufacturing (VAM) forms complete 3D objects in a single photocuring operation without layering defects, enabling 3D printed polymer parts with mechanical properties similar to their bulk material counterparts. This study presents the first report of VAM-printed thiol-ene resins. With well-ordered molecular networks, thiol-ene chemistry accesses polymer materials with a wide range of mechanical properties, moving VAM beyond the limitations of commonly used acrylate formulations. Since free-radical thiol-ene polymerization is not inhibited by oxygen, the nonlinear threshold response required in VAM is introduced by incorporating 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a radical scavenger. Tuning of the reaction kinetics is accomplished by balancing inhibitor and initiator content. Coupling this with quantitative measurements of the absorbed volumetric optical dose allows control of polymer conversion and gelation during printing. Importantly, this work thereby establishes the first comprehensive framework for spatial-temporal control over volumetric energy distribution, demonstrating structures 3D printed in thiol-ene resin by means of tomographic volumetric VAM. Mechanical characterization of this thiol-ene system, with varied ratios of isocyanurate and triethylene glycol monomers, reveals highly tunable mechanical response far more versatile than identical acrylate-based resins. This broadens the range of materials and properties available for VAM, taking another step toward high-performance printed polymers.
Collapse
Affiliation(s)
- Caitlyn C Cook
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Erika J Fong
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | | | | | | | - James S Oakdale
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Bryan D Moran
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Kyle M Champley
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Charles M Rackson
- Electrical, Computer, and Energy Engineering Department, University of Colorado, Boulder, CO, 80309, USA
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80303, USA
| | - Robert R McLeod
- Electrical, Computer, and Energy Engineering Department, University of Colorado, Boulder, CO, 80309, USA
| | - Maxim Shusteff
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
9
|
Bin Rusayyis M, Torkelson JM. Recyclable Polymethacrylate Networks Containing Dynamic Dialkylamino Disulfide Linkages and Exhibiting Full Property Recovery. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|