1
|
Cao L, Chen H, Fu H, Xian J, Cao H, Pan X, Wu J. Bidentate selenium-based chalcogen bond catalyzed cationic polymerization of p-methoxystyrene. Chem Commun (Camb) 2024; 60:1321-1324. [PMID: 38197262 DOI: 10.1039/d3cc05516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The application of selenium-based non-covalent bond catalysis in living cationic polymerization has rarely been reported. In this work, the cationic polymerization of p-methoxystyrene (pMOS) was performed using a bidentate selenium bond catalyst - a new water-tolerant Lewis acid catalyst. A polymer with controllable molecular weight and narrow molecular weight distribution can be obtained at room temperature, with a maximum molecular weight of 23.3 kDa. This selenium bond compound can also catalyze the controllable cationic polymerization of p-methoxy styrene under environmental conditions. By changing the monomer feeding ratio, a secondary feeding experiment and DFT analysis, it is shown that the selenium bond catalyst can induce polymer chain growth by reversibly activating dormant covalent bonds (C-OH).
Collapse
Affiliation(s)
- Luya Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Hongjun Fu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Ji Xian
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Hongzhang Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| |
Collapse
|
2
|
Takagi K, Murakata H, Hasegawa T. Application of Thiourea/Halogen Bond Donor Cocatalysis in Metal-Free Cationic Polymerization of Isobutyl Vinyl Ether and Styrene Derivatives. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hiroto Murakata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Takagi K, Sakakibara N, Hasegawa T, Hayashi S. Controlled/Living Cationic Polymerization of p-Methoxystyrene Using Tellurium-Based Chalcogen Bonding Catalyst─Discovery of a New Water-Tolerant Lewis Acid Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Nao Sakakibara
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Shuhei Hayashi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Hayashi K, Kanazawa A, Aoshima S. Cationic Copolymerization of o-Phthalaldehyde and Vinyl Monomers with Various Substituents on the Vinyl Group or in the Pendant: Effects of the Structure and Reactivity of Vinyl Monomers on Copolymerization Behavior. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Hayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan 560-0043
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan 560-0043
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan 560-0043
| |
Collapse
|
5
|
|
6
|
Destephen A, González de San Román E, Ballard N. The influence of thiocarbonylthio compounds on the B(C 6F 5) 3 catalyzed cationic polymerization of styrene. Polym Chem 2022. [DOI: 10.1039/d2py00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When applied to the cationic polymerization of styrene, thiocarbonylthio compounds can lead to a dual control mechanism, where degenerative chain transfer occurs concurrent with a reversible addition mechanism.
Collapse
Affiliation(s)
- Aurélie Destephen
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Estibaliz González de San Román
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Knutson PC, Teator AJ, Varner TP, Kozuszek CT, Jacky PE, Leibfarth FA. Brønsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers. J Am Chem Soc 2021; 143:16388-16393. [PMID: 34597508 DOI: 10.1021/jacs.1c08282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isotactic poly(vinyl ether)s (PVEs) have recently been identified as a new class of semicrystalline thermoplastics with a valuable combination of mechanical and interfacial properties. Currently, methods to synthesize isotactic PVEs are limited to strong Lewis acids that require a high catalyst loading and limit the accessible scope of monomer substrates for polymerization. Here, we demonstrate the first Brønsted acid catalyzed stereoselective polymerization of vinyl ethers. A single-component imidodiphosphorimidate catalyst exhibits a sufficiently low pKa to initiate vinyl ether polymerization and acts as a chiral conjugate base to direct the stereochemistry of monomer addition to the oxocarbenium ion reactive chain end. This Brønsted acid catalyzed stereoselective polymerization enabled an expanded substrate scope compared to previous methods, the use of chain transfer agents to lower catalyst loading, and the capability to recycle the catalyst for multiple polymerizations.
Collapse
Affiliation(s)
- Phil C Knutson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron J Teator
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caleb T Kozuszek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paige E Jacky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Belay TA, Chen J, Xu H, Zhang S, Chen S, Li X. Functionalization Methodology for Synthesis of Silane-End-Functionalized Linear and Star Poly(aryl isocyanide)s by Combination of Cationic Polymerization and Hydrosilylation Reaction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuemay Abadi Belay
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jupeng Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Huan Xu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shilu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
10
|
Huo M, Bian Y, Yu C, Tong G, Zhang C, Zhu X. Sulfanion-initiated open-vessel anionic ring-opening polymerization (AROP) of N-sulfonyl aziridines. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zhu Y, Gao L, Li Z, Liu B, Zhang Z, Tong H, Qu Y, Quan Y, Zou X, Guo K. Merging of cationic RAFT and radical RAFT polymerizations with ring-opening polymerizations for the synthesis of asymmetric ABCD type tetrablock copolymers in one pot. Polym Chem 2021. [DOI: 10.1039/d1py00971k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new bifunctional and switchable RAFT agent and a mechanism switching strategy were proposed to control the cationic RAFT polymerization, radical RAFT polymerization and ring-opening polymerization of vinyl and cyclic ester monomers and to produce block copolymers.
Collapse
Affiliation(s)
- Yuejia Zhu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Luoyu Gao
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Zhenjiang Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Bo Liu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Zhihao Zhang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Haoying Tong
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yuanyuan Qu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yusheng Quan
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Xin Zou
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
12
|
Lin X, Li J, Zhang J, Liu S, Lin X, Pan X, Zhu J, Zhu X. Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polym Chem 2021. [DOI: 10.1039/d0py01691h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a living cationic polymerization of vinyl ethers utilizing electrophilic selenium reagents as initiators and pentacarbonylbromomanganese (Mn(CO)5Br) as the catalyst.
Collapse
Affiliation(s)
- Xia Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiajia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shaoxiang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaofang Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
13
|
Kang SM, Xu XH, Xu L, Zhou L, Liu N, Wu ZQ. Highly 2,3-selective and fast living polymerization of alkyl-, alkoxy- and phenylallenes using nickel(ii) catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00482d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel Ni(ii) catalyst was developed to initiate the polymerization of various allene monomers efficiently in a fast and living/controlled manner, and the thermodynamic and crystallization properties of the polymers were investigated.
Collapse
Affiliation(s)
- Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
14
|
Hotta D, Kanazawa A, Aoshima S. tert-Butyl Esters as Potential Reversible Chain Transfer Agents for Concurrent Cationic Vinyl-Addition and Ring-Opening Copolymerization of Vinyl Ethers and Oxiranes. Macromol Rapid Commun 2020; 42:e2000479. [PMID: 33200479 DOI: 10.1002/marc.202000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
tert-Butyl esters are demonstrated to function as chain transfer agents (CTAs) in the cationic copolymerization of vinyl ether (VE) and oxirane via concurrent vinyl-addition and ring-opening mechanisms. In the copolymerization of isopropyl VE and isobutylene oxide (IBO), the IBO-derived propagating species reacts with tert-butyl acetate to generate a copolymer chain with an acetoxy group at the ω-end. This reaction liberates a tert-butyl cation; hence, a polymer chain with a tert-butyl group at the α-end is subsequently generated. Other tert-butyl esters also function as CTAs, and the substituent attached to the carbonyl group affects the chain transfer efficiency. In addition, ethyl acetate does not function as a CTA, which suggests the importance of the liberation of a tert-butyl cation for the chain transfer process. Chain transfer reactions by tert-butyl esters potentially occur reversibly through the reaction of the propagating cation with the ester group at the ω-end of another chain.
Collapse
Affiliation(s)
- Daisuke Hotta
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
15
|
Takagi K, Murakata H, Yamauchi K, Hashimoto K. Cationic polymerization of vinyl monomers using halogen bonding organocatalysts with varied activity. Polym Chem 2020. [DOI: 10.1039/d0py01207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymerization of vinyl monomers was investigated using non-ionic and ionic halogen bonding organocatalysts.
Collapse
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Hiroto Murakata
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Koji Yamauchi
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Kohei Hashimoto
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| |
Collapse
|
16
|
Sifri RJ, Kennedy AJ, Fors BP. Photocontrolled cationic degenerate chain transfer polymerizations via thioacetal initiators. Polym Chem 2020. [DOI: 10.1039/d0py01100b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photocontrolled cationic polymerizations controlled through a degenerate chain transfer process and photocatalyst turnover to recap propagating chains.
Collapse
Affiliation(s)
- Renee J. Sifri
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Audrey J. Kennedy
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|