1
|
Li X, Ou X, Chen G, Bi R, Li Z, Xie Z, Yue W, Guo SZ. Ultrasoft and High-Adhesion Block Copolymers for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412379 DOI: 10.1021/acsami.3c19350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The "von Neumann bottleneck" is a formidable challenge in conventional computing, driving exploration into artificial synapses. Organic semiconductor materials show promise but are hindered by issues such as poor adhesion and a high elastic modulus. Here, we combine polyisoindigo-bithiophene (PIID-2T) with grafted poly(dimethylsiloxane) (PDMS) to synthesize the triblock-conjugated polymer (PIID-2T-PDMS). The polymer exhibited substantial enhancements in adhesion (4.8-68.8 nN) and reductions in elastic modulus (1.6-0.58 GPa) while maintaining the electrical characteristics of PIID-2T. The three-terminal organic synaptic transistor (three-terminal p-type organic artificial synapse (TPOAS)), constructed using PIID-2T-PDMS, exhibits an unprecedented analog switching range of 276×, surpassing previous records, and a remarkable memory on-off ratio of 106. Moreover, the device displays outstanding operational stability, retaining 99.6% of its original current after 1600 write-read events in the air. Notably, TPOAS replicates key biological synaptic behaviors, including paired-pulse facilitation (PPF), short-term plasticity (STP), and long-term plasticity (LTP). Simulations using handwritten digital data sets reveal an impressive recognition accuracy of 91.7%. This study presents a polyisoindigo-bithiophene-based block copolymer that offers enhanced adhesion, reduced elastic modulus, and high-performance artificial synapses, paving the way for the next generation of neuromorphic computing systems.
Collapse
Affiliation(s)
- Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ziqian Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
2
|
Ren S, Zhang W, Chen J, Yassar A. Theoretical and Experimental Study of Different Side Chains on 3,4-Ethylenedioxythiophene and Diketopyrrolopyrrole-Derived Polymers: Towards Organic Transistors. Int J Mol Sci 2024; 25:1099. [PMID: 38256172 PMCID: PMC10816275 DOI: 10.3390/ijms25021099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this research, two polymers of P1 and P2 based on monomers consisting of thiophene, 3,4-Ethylenedioxythiophene (EDOT) and diketopyrrolopyrrole (DPP) are designed and obtained via Stille coupling polycondensation. The material shows excellent coplanarity and structural regularity due to the fine planarity of DPP itself and the weak non-covalent bonding interactions existing between the three units. Two different lengths of non-conjugated side chains are introduced and this has an effect on the intermolecular chain stacking, causing the film absorption to display different characteristic properties. On the other hand, the difference in the side chains does not have a significant effect on the thermal stability and the energy levels of the frontier orbitals of the materials, which is related to the fact that the materials both feature extremely high conjugation lengths and specific molecular compositions. Microscopic investigations targeting the side chains provide a contribution to the further design of organic semiconductor materials that meet device requirements. Tests based on organic transistors show a slight difference in conductivity between the two polymers, with P2 having better hole mobility than P1. This study highlights the importance of the impact of side chains on device performance, especially in the field of organic electronics.
Collapse
Affiliation(s)
- Shiwei Ren
- Advanced Materials Laboratory, Zhuhai-Fudan Innovation Institute, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin 519000, China;
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Jinyang Chen
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Abderrahim Yassar
- Laboratory of Physics of Interfaces and Thin Films, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
3
|
Matsuda M, Lin CY, Sung CY, Lin YC, Chen WC, Higashihara T. Unraveling the Effect of Stereoisomerism on Mobility-Stretchability Properties of n-Type Semiconducting Polymers with Biobased Epimers as Conjugation Break Spacers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37897701 DOI: 10.1021/acsami.3c09951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The development of intrinsically stretchable n-type semiconducting polymers has garnered much interest in recent years. In this study, three biobased dianhydrohexitol epimers of isosorbide (ISB), isomannide (IMN), and isoidide (IID), derived from cellulose, were incorporated into the backbone of a naphthalenediimide (NDI)-based n-type semiconducting polymer as conjugation break spacers (CBSs). Accordingly, three polymers were synthesized through the Migita-Kosugi-Stille coupling polymerization with NDI, bithiophene, and CBSs, and the mobility-stretchability properties of these polymers were investigated and compared with those of their analogues with conventional alkyl-based CBSs. Experimental results showed that the different configurations of these epimers in CBSs sufficiently modulate the melt entropies, surface aggregation, crystallographic parameters, chain entanglements, and mobility-stretchability properties. Comparable ductility and edge-on preferred stacking were observed in polymers with endo- or exo-configurations in IMN- and IID-based polymers. By contrast, ISB with endo-/exo-configurations exhibits an excellent chain-realigning capability, a reduced crack density, and a proceeding bimodal orientation under tensile strain. Therefore, the ISB-based polymer exhibits high orthogonal electron mobility retention of (53 and 56)% at 100% strain. This study is one of the few examples where biobased moieties are incorporated into semiconducting polymers as stress-relaxation units. Additionally, this is the first study to report on the effect of stereoisomerism of epimers on the morphology and mobility-stretchability properties of semiconducting polymers.
Collapse
Affiliation(s)
- Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yuan Sung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
Sun J, Liu X, Tong Y, Zhao G, Ni Y, Zhao X, Wang B, Wang X, Zhang M, Guo S, Han X, Tang Q, Liu Y. Air/Liquid Interfacial Self-Assembled Intrinsically Stretchable IDT-BT Film Combining a Deliberate Transfer Adherence Strategy for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46108-46118. [PMID: 37740925 DOI: 10.1021/acsami.3c08330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Indacenodithiophene-benzothiadiazole (IDT-BT) has emerged as one of the most promising candidates for stretchable electronics due to its good stretchability and high mobility. Here, we present an air/liquid interface self-assembly method for the stretchable IDT-BT films and design an air-side transfer adherence strategy for improving the carrier mobility of IDT-BT. By controlling the cosolvent ratio in solution and the solvent evaporation rate, the large-scale intrinsically stretchable IDT-BT film with the diameter as high as ∼3 cm was self-assembled at the air/liquid interface. The resulting stretchable film with lightweight and good uniformity could be easily transferred to curved objects such as flexible 3 M tape, glass ball, and seashell. It is found that the transfer adherence strategy of the semiconductor film significantly affects the carrier transport. The transfer adherence from air-side can effectively decrease the number of the adsorbed water molecules at semiconductor/dielectric interface, which presents the mobility as high as 2.98 cm2 V-1 s-1. Based on the air/liquid interface self-assembled IDT-BT film, the peeling process of the film for preparation of full stretchable transistors could be eliminated. The resulting intrinsically stretchable transistor exhibits mobility higher than that of the transistor with a conventional spin-coated film. Our research provides new pathways for preparing the stretchable films and intrinsically stretchable organic field-effect transistors and shows the promising potential of the air/liquid interface self-assembly strategy for stretchable electronics.
Collapse
Affiliation(s)
- Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoqian Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Guodong Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xue Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shanlei Guo
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xu Han
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
5
|
Rehman HU, Hedenqvist MS, Chen Y, Guo Y, Li H, Liu H. Stretchable, Strong, Recyclable Helicide Elastomer Based on Dynamic Covalent Interactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46280-46291. [PMID: 37729208 DOI: 10.1021/acsami.3c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Current methods for making and disposing synthetic polymers have been widely pursued and are largely unsustainable. As a part of the solution, the reversible nature of dynamic covalent bonds emerges as an extraordinarily diverse and valuable feature in the development of exotic molecules and extended structures. With these bonds, it should be possible to construct recyclable and mechanically interlocked molecular structures using relatively simple precursors with preorganized geometries. A new helicide-based elastomer network is developed here with self-healing, recycling, and degradation features using a similar concept. The best self-healing performance (100%) was noted over 10-20 min, with various H2O, HCl, and NaOH solutions that delivered mechanical properties in the 1-1.4 MPa range. For hydrolytic degradation, the parameters are defined based on the type of binding, the pH of the solutions, and the copolymer network, which endowed a degradation time of approximately 4-11 h for each prepared sample. However, due to the reversible nature of the dynamic bonds, the material showed good recyclable mechanical properties compared to the pristine samples after five consecutive cycles, which meet the requirements of recyclable materials and recyclable packaging.
Collapse
Affiliation(s)
- Hafeez Ur Rehman
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Physics, The University of Lahore, 1-KM Defense Road, Lahore 54000, Pakistan
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Guo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hua Li
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hezhou Liu
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Matsuda M, Lin CY, Enomoto K, Lin YC, Chen WC, Higashihara T. Impact of the Heteroatoms on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kazushi Enomoto
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
7
|
Zhu S, Peng J. Enhanced Solvent and Thermal Stability in Cross-Linkable Conjugated Statistical Copolymers for Organic Field-Effect Transistors. Chemistry 2023; 29:e202203571. [PMID: 36478474 DOI: 10.1002/chem.202203571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
The ability to enhance both the solvent and thermal stability of semiconducting π-conjugated polymers is highly desired for various device-related applications. Herein, a series of poly(3-hexylthiophene)-stat-poly[3-(6-hydroxy)hexylthiophene] (P3HT-stat-P3HHT) statistical copolymers with thermally cross-linkable hydroxyl groups is synthesized and their crystalline structures in three different states, solvent and thermal stability for use in organic field-effect transistors (OFETs) are elucidated. Importantly, these initial P3HT-stat-P3HHT thin films in their as-cast state crystallize well in an edge-on orientation. During annealing at 150 °C, these P3HT-stat-P3HHT occur cross-linked and retain edge-on orientation with increased crystallinity and ordering. In contrast, after high-temperature annealing at 300 °C, their edge-on orientation is significantly destroyed due to the cross-linking of hydroxyl groups at melted state. The correlation between different P3HT-stat-P3HHT and their charge mobilities is scrutinized. These cross-linked P3HT-stat-P3HHT exhibit good solvent resistance property and improved thermal stability in OFETs. Conceptually, such side-chain functionalization approach to improve the stability of P3HT-stat-P3HHT can be conveniently extended to other conjugated polymers for diverse optoelectronic applications.
Collapse
Affiliation(s)
- Shuyin Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
8
|
Wu WN, Tu TH, Pai CH, Cheng KH, Tung SH, Chan YT, Liu CL. Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chiao-Hsuan Pai
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Kuan-Heng Cheng
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
9
|
Facile access to coil-rod-coil-type block copolymers by CuAAC-based macromolecular clicking. Polym J 2022. [DOI: 10.1038/s41428-022-00714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Liu D, Ding Z, Wu Y, Liu SF, Han Y, Zhao K. In Situ Study of Molecular Aggregation in Conjugated Polymer/Elastomer Blends toward Stretchable Electronics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| |
Collapse
|
11
|
Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101469. [PMID: 34297433 DOI: 10.1002/adma.202101469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.
Collapse
Affiliation(s)
- Emilie Dauzon
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | | | - Cedric Plesse
- LPPI, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Yang HR, Chen YY, Sun HS, Tung SH, Huang SL, Huang PC, Lee JJ, Lai YY. Strengthening the Intrachain Interconnection of Polymers by the Naphthalene Diimide–Pyrene Complementary Interactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hau-Ren Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Sheng Sun
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Chia Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jey-Jau Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Ying Lai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating. Polymers (Basel) 2021; 13:polym13091435. [PMID: 33946975 PMCID: PMC8125458 DOI: 10.3390/polym13091435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.
Collapse
|
14
|
Ding Z, Liu D, Zhao K, Han Y. Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
15
|
Guo R, Li B, Lu T, Lin T, Andre J, Zhang C, Zhi L, Chen Z. Molecular Orientations at Buried Conducting Polymer/Graphene Interfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruiying Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bolin Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ting Lin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chengcheng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Hsu LC, Isono T, Lin YC, Kobayashi S, Chiang YC, Jiang DH, Hung CC, Ercan E, Yang WC, Hsieh HC, Tajima K, Satoh T, Chen WC. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2932-2943. [PMID: 33423476 DOI: 10.1021/acsami.0c18820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties and structural design flexibility of charge-trapping polymer electrets have led to their widespread use in organic field-effect transistor (OFET) memories. For example, in the electrets of polyfluorene-based conjugated/insulating block copolymers (BCPs), the confined fiberlike polyfluorene nanostructures in the insulating polymer matrix act as effective hole-trapping sites, leading to controllable memory performance through the design of BCPs. However, few studies have reported intrinsically stretchable charge-trapping materials and their memory device applications, and a practical method to correlate the thin-film morphology of BCP electrets with their charge-trapping ability has not yet been developed. In this study, a series of new conjugated/insulating BCPs, poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s (PF-b-PDLx, x = 1-3), as stretchable hole-trapping materials are reported. The linear and branched PDL blocks with comparable molecular weights were used to investigate the effect of polymer architecture on morphology and device performance. Moreover, the coverage area of the polyfluorene nanofibers on the BCP films was extracted from atomic force microscopy images, which can be correlated with the trapping density of the polymer electrets. The branched PDL segments not only improve stretchability but also tailor crystallinity and phase separation of the BCPs, thus increasing their charge-trapping ability. The OFET memory device with PF-b-PDL3 as the electret layer exhibited the largest memory window (102 V) and could retain its performance at up to 100% strain. This research highlights the importance of the BCP design for developing stretchable charge-trapping materials.
Collapse
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Saburo Kobayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dai-Hua Jiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chih-Chien Hung
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ender Ercan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Philipps K, Junkers T, Michels JJ. The block copolymer shuffle in size exclusion chromatography: the intrinsic problem with using elugrams to determine chain extension success. Polym Chem 2021. [DOI: 10.1039/d1py00210d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Is an increase in hydrodynamic volume always expected in block copolymer synthesis? Why SEC is sometimes not the last word.
Collapse
Affiliation(s)
- Kai Philipps
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | |
Collapse
|
18
|
Ditte K, Perez J, Chae S, Hambsch M, Al‐Hussein M, Komber H, Formanek P, Mannsfeld SCB, Fery A, Kiriy A, Lissel F. Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005416. [PMID: 33314375 PMCID: PMC11468703 DOI: 10.1002/adma.202005416] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers-semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)-in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2 V-1 s-1 , in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2 V-1 s-1 ). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain.
Collapse
Affiliation(s)
- Kristina Ditte
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
- Faculty of Chemistry and Food ChemistryTechnische Universität DresdenDresden01062Germany
| | - Jonathan Perez
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstraße 18Dresden01069Germany
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Soosang Chae
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstraße 18Dresden01069Germany
| | - Mahmoud Al‐Hussein
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
- Physics Department and Hamdi Mango Center for Scientific ResearchThe University of JordanAmman11942Jordan
| | - Hartmut Komber
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
| | - Peter Formanek
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
| | - Stefan C. B. Mannsfeld
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstraße 18Dresden01069Germany
| | - Andreas Fery
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
| | - Anton Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
| | - Franziska Lissel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
- Faculty of Chemistry and Food ChemistryTechnische Universität DresdenDresden01062Germany
| |
Collapse
|