1
|
Ahmad Mustamin K, Sani Sarjadi M, Sarkar SM, Kumar S, Rahman ML. Optimization of Polymers for Organic Solar Cells: Effects of Alkyl, Fluorinated and Thiophenated Chains. Chem Asian J 2025; 20:e202401406. [PMID: 39831691 DOI: 10.1002/asia.202401406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
This paper explores optimization strategies for polymeric materials in organic solar cells (OSCs) with the focus on varying alkyl side chain, addition of fluorine atom, and thiophenated derivatives onto polymer. As such, it outlines the significance of renewable energy sources and the potential of photovoltaic technologies, particularly organic photovoltaics (OPVs). Objectives include factors affecting power conversion efficiency (PCE), open-circuit voltage (Voc), aggregation tendencies, and optoelectronic properties in OPVs. The scope encompasses the impact of alkyl as well as the comparison between fluorinated and chlorinated polymers and the role of thiophene units to obtain an efficient organic solar cell. The review examines how alkyl chain structures influence thin film morphology, packing, and device performance, comparing linear and branched configurations. It also explores the role of halogenated polymers in modifying electronic properties and stability, focusing on the comparative performance between fluorinated and chlorinated polymers. The importance of thiophene units in polymer design for OPVs is discussed, along with performance comparisons based on different architectures. The paper summarizes key findings regarding the impact of various side chain modifications for OPVs device performance and outlines future research directions to enhance efficiency, stability, and scalability. It suggests exploring novel material design to further optimize OSCs.
Collapse
Affiliation(s)
- Kalsum Ahmad Mustamin
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, 88450, Sabah, Malaysia
| | - Mohd Sani Sarjadi
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, 88450, Sabah, Malaysia
| | - Shaheen M Sarkar
- Technological University of the Shannon, Midlands Midwest, Moylish, Limerick, V94, EC5T, Ireland
| | - Sandeep Kumar
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore 560064, India
| | - Md Lutfor Rahman
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, 88450, Sabah, Malaysia
| |
Collapse
|
2
|
Müller J, Comí M, Eisner F, Azzouzi M, Herrera Ruiz D, Yan J, Attar SS, Al-Hashimi M, Nelson J. Charge-Transfer State Dissociation Efficiency Can Limit Free Charge Generation in Low-Offset Organic Solar Cells. ACS ENERGY LETTERS 2023; 8:3387-3397. [PMID: 37588019 PMCID: PMC10425975 DOI: 10.1021/acsenergylett.3c00943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023]
Abstract
We investigate the charge-generation processes limiting the performance of low-offset organic bulk-heterojunction solar cells by studying a series of newly synthesized PBDB-T-derivative donor polymers whose ionisation energy (IE) is tuned via functional group (difluorination or cyanation) and backbone (thiophene or selenophene bridge) modifications. When blended with the acceptor Y6, the series present heterojunction donor-acceptor IE offsets (ΔEIE) ranging from 0.22 to 0.59 eV. As expected, small ΔEIE decrease nonradiative voltage losses but severely suppresses photocurrent generation. We explore the origin of this reduced charge-generation efficiency at low ΔEIE through a combination of opto-electronic and spectroscopic measurements and molecular and device-level modeling. We find that, in addition to the expected decrease in local exciton dissociation efficiency, reducing ΔEIE also strongly reduces the charge transfer (CT) state dissociation efficiency, demonstrating that poor CT-state dissociation can limit the performance of low-offset heterojunction solar cells.
Collapse
Affiliation(s)
- Jolanda
Simone Müller
- Department
of Physics and Centre for processable Electronics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Marc Comí
- Department
of Arts and Sciences, Texas A&M University
at Qatar, Education City,
P.O. Box 23874, Doha, Qatar
| | - Flurin Eisner
- Department
of Physics and Centre for processable Electronics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Mohammed Azzouzi
- Department
of Physics and Centre for processable Electronics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Diego Herrera Ruiz
- Department
of Physics and Centre for processable Electronics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Jun Yan
- Department
of Physics and Centre for processable Electronics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
- School
of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen, Guangdong Province 518172, P. R. China
| | | | - Mohammed Al-Hashimi
- Department
of Arts and Sciences, Texas A&M University
at Qatar, Education City,
P.O. Box 23874, Doha, Qatar
| | - Jenny Nelson
- Department
of Physics and Centre for processable Electronics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Wu Q, Wang W, Wu Y, Sun R, Guo J, Shi M, Min J. Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells. Natl Sci Rev 2022; 9:nwab151. [PMID: 35145704 PMCID: PMC8824755 DOI: 10.1093/nsr/nwab151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The trade-off between efficiency and stability is a bit vague, and it can be tricky to precisely control the bulk morphology to simultaneously improve device efficiency and stability. Herein, three fused-ring conducted polymer acceptors containing furan, thiophene and selenophene as the electron linkers in their conjugated backbones, namely PY-O, PY-S and PY-Se, were designed and synthesized. The electron linker engineering affects the intermolecular interactions of relative polymer acceptors and their charge transport properties. Furthermore, excellent material compatibility was achieved when PY-Se was blended with polymer donor PBDB-T, resulting in nanoscale domains with favorable phase separation. The optimized PBDB-T : PY-Se blend not only exhibits maximum performance with a power conversion efficiency of 15.48%, which is much higher than those of PBDB-T : PY-O (9.80%) and PBDB-T : PY-S (14.16%) devices, but also shows better storage and operational stabilities, and mechanical robustness. This work demonstrates that precise modification of electron linkers can be a practical way to simultaneously actualize molecular crystallinity and phase miscibility for improving the performance of all-polymer solar cells, showing practical significance.
Collapse
Affiliation(s)
- Qiang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yao Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jing Guo
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Mumin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450002, China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Shavez M, Panda AN. Assessing Effects of Different π bridges on Properties of Random Benzodithiophene-thienothiophene Donor and Non-fullerene Acceptor Based Active Layer. J Phys Chem A 2021; 125:9852-9864. [PMID: 34738461 DOI: 10.1021/acs.jpca.1c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report presents the effect of insertion of four different π bridges, furan, thienothiophene, thiophene, and thiazole, into a random benzodithiophene (BDT)-fluorinated-thienothiophene (TT-F) based donor. Starting from a structure of synthesized donor (D)-acceptor (A) random copolymer with 3:1 ratio, we have designed four D-π-A systems with four different π bridges. Structural, optoelectronic, and charge transport/transfer properties of these donors and donor/NDI (NDI = poly[N,N'-bis(2-hexyldecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) blends are investigated using DFT and TD-DFT methodologies. Our results show that the thiazole based TzP1 oligomer has the deepest HOMO value resulting in the highest open circuit voltage among all systems. The maximum absorption wavelengths of π-linked systems are red-shifted compared to the parent molecule. Rates of charge transfer and charge recombination are the highest and smallest in case of the thiazole/NDI blend system. In addition, hole mobilities in thiophene, thienothiophene, and thiazole based systems are larger than in the parent system. The results indicate that the thiazole unit among the four π bridge units is the most suitable for active layer construction.
Collapse
Affiliation(s)
- Mohd Shavez
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
5
|
Liu YQ, Zhi HF, Bai HR, Jiang Z, Wan SS, Jiang M, Mahmood A, Yang C, Sun S, An Q, Wang JL. Two-Dimensional Conjugated Benzo[1,2-b:4,5-b']diselenophene-Based Copolymer Donor Enables Large Open-Circuit Voltage and High Efficiency in Selenophene-based Organic Solar Cells. CHEMSUSCHEM 2021; 14:4454-4465. [PMID: 34323383 DOI: 10.1002/cssc.202101232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
A two-dimensional electron-rich fused-ring moiety (ClBDSe) based on benzo[1,2-b:4,5-b']diselenophene is synthesized. Three copolymers (PBDT-Se, PBDSe-T, and PBDSe-Se) are obtained by manipulating the connection types and number of selenophene units on the conjugated main chains with two 2D fused-ring units and two different π-bridges, respectively. In comparison with PBDT-Se and PBDSe-Se, PBDSe-T with benzo[1,2-b:4,5-b']diselenophene unit and thiophene π-bridge exhibits the deepest HOMO energy level and the strongest crystallinity in neat films. The PBDSe-T:Y6 blend film exhibits the best absorption complementarity, the most distinctive face-on orientation with proper phase separation, the highest carrier mobilities, and the lowest charge recombination among three blend films. Finally, the PBDSe-T:Y6-based device delivers an impressive power conversion efficiency (PCE) of 14.50 %, which is higher than those of PBDT-Se:Y6 and PBDSe-Se:Y6. Moreover, a decent open-circuit voltage (Voc ) of 0.89 V with a remarkably small energy loss of 0.44 eV is achieved for PBDSe-T:Y6. The efficiency of 14.50 % is the highest value for selenophene-containing copolymer-based binary organic solar cells (OSCs). This study provides evidence that introduction of 2D-benzo[1,2-b:4,5-b']diselenophene as a fused electron-rich unit with π-bridging into copolymeric donors is a valid strategy for providing high Voc and excellent PCE simultaneously in selenophene-based OSCs.
Collapse
Affiliation(s)
- Yan-Qiang Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Zhao Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Shi-Sheng Wan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Shuo Sun
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 1, 00081, P. R. China
| |
Collapse
|
6
|
He K, Kumar P, Yuan Y, Zhang Z, Li X, Liu H, Wang J, Li Y. A Wide Bandgap Polymer Donor Composed of Benzodithiophene and Oxime-Substituted Thiophene for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26441-26450. [PMID: 34034487 DOI: 10.1021/acsami.1c02442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxime-substituted thiophene (TO) is used as an acceptor (A) unit to copolymerize with the benzodithiophene (BDT) donor (D) unit to form a novel D-A polymer donor, PBDTTO, which has a low-lying highest occupied molecular orbital energy level (EHOMO) of -5.60 eV and a wide bandgap of 2.03 eV, forming complementary absorption and matching energy levels with the narrow bandgap nonfullerene acceptors. Organic solar cells using PBDTTO and Y6 as the donor and acceptor, respectively, exhibited a JSC of 27.03 mA cm-2, a VOC of 0.83 V, and a fill factor of 0.59, reaching a high power conversion efficiency of 13.29%. The unencapsulated devices show good long-term stability in ambient air. Compared with the acceptor monomers used in other high-performance BDT-based D-A polymer donors, which are synthesized tediously in low yields, the TO acceptor monomer can be conveniently synthesized in only two steps with a high overall yield of 70%. These results demonstrate that TO unit can be used as a promising acceptor unit for developing BDT-based D-A polymer donors at low cost while maintaining high photovoltaic performance.
Collapse
Affiliation(s)
- Keqiang He
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pankaj Kumar
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yi Yuan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhifang Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002A, China
| | - Haitao Liu
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002A, China
| | - Jinliang Wang
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002A, China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Shavez M, Ray AK, Panda AN. Halogenation of the Side Chains in Donor‐Acceptor Based Small Molecules for Photovoltaic Applications: Energetics and Charge‐Transfer Properties from DFT/TDDFT Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohd Shavez
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Anuj Kumar Ray
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Aditya N. Panda
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| |
Collapse
|
8
|
Zhao T, Wang H, Pu M, Lai H, Chen H, Zhu Y, Zheng N, He F. Tuning the Molecular Weight of
Chlorine‐Substituted
Polymer Donors for Small Energy Loss
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tingxing Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Huan Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China, University of Technology Guangzhou, Guangdong 510640, China Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China, University of Technology Guangzhou, Guangdong 510640, China Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Chao P, Chen H, Pu M, Zhu Y, Han L, Zheng N, Zhou J, Chang X, Mo D, Xie Z, Meng H, He F. Chlorinated Benzo[1,2-b:4,5-c']dithiophene-4,8-dione Polymer Donor: A Small Atom Makes a Big Difference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003641. [PMID: 33643808 PMCID: PMC7887605 DOI: 10.1002/advs.202003641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The position of a chlorine atom in a charge carrier of polymer solar cells (PSCs) is important to boost their photovoltaic performance. Herein, two chlorinated D-A conjugated polymers PBBD-Cl-α and PBBD-Cl-β are synthesized based on two new building blocks (TTO-Cl-α and TTO-Cl-β) respectively by introducing the chlorine atom into α or β position of the upper thiophene of the highly electron-deficient benzo[1,2-b:4,5-c']dithiophene-4,8-dione moiety. Single-crystal analysis demonstrates that the chlorine-free TTO shows a π-π stacking distance (d π-π) of 3.55 Å. When H atom at the α position of thiophene of TTO is replaced by Cl, both π-π stacking distance (d π-π = 3.48 Å) and Cl···S distance (d Cl-S = 4.4 Å) are simultaneously reduced for TTO-Cl-α compared with TTO. TTO-Cl-β then showed the Cl···S non-covalent interaction can further shorten the intermolecular π-π stacking separation to 3.23 Å, much smaller than that of TTO-Cl-α and TTO. After blending with BTP-eC9, PBBD-Cl-β:BTP-eC9-based PSCs achieved an outstanding power conversion efficiency (PCE) of 16.20%, much higher than PBBD:BTP-eC9 (10.06%) and PBBD-Cl-α:BTP-eC9 (13.35%) based devices. These results provide an effective strategy for design and synthesis of highly efficient donor polymers by precise positioning of the chlorine substitution.
Collapse
Affiliation(s)
- Pengjie Chao
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- School of Advanced MaterialsPeking University Shenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Academy for Advanced Interdisciplinary Studies and Department of chemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Xiaoyong Chang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Daize Mo
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Hong Meng
- School of Advanced MaterialsPeking University Shenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feng He
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|