1
|
Ghose S, Duwez AS, Fustin CA, Remacle F. Response of a Tethered Zn-Bis-Terpyridine Complex to an External Mechanical Force: A Computational Study of the Roles of the Tether and Solvent. J Phys Chem A 2025; 129:3423-3434. [PMID: 40183643 DOI: 10.1021/acs.jpca.4c08639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Polymeric materials containing weak sacrificial bonds can be designed to engineer self-healing and higher toughness, improve melt-processing, or facilitate recycling. However, they usually exhibit a lower mechanical strength and are subject to creep and fatigue. For improving their design, it is of interest to investigate their mechanical response on the molecular scale. We report on a computational study of the response to a mechanical external force of a Zinc(II) bis-methyl phenyl-terpyridine ([Zn-bis-Terpy]2+) complex included in a cyclic poly(ethylene glycol) (PEG) tether designed to maintain the two partners of the metal-ligand bonds in close proximity after the rupture of the complex. The mechanical response is studied as a function of the pulling distortion by using the CoGEF isometric protocol, including interactions with a polar solvent (DMSO). We show that tethering favors recombination but destabilizes the complex before bond rupture because of the interactions of the PEG units with Terpy ligands. Similar effects occur between the DMSO molecules and the complex. Our results on the molecular scale are relevant for single-molecule force spectroscopy experiments. Interactions of the complex with solvent molecules and/or with the tether lead to a dispersion of the rupture force values, which could obscure the interpretation of the results.
Collapse
Affiliation(s)
- Shouryo Ghose
- Theoretical Physical Chemistry, Research Unit MOLSYS, University of Liège, 4000 Liège, Belgium
| | - Anne-Sophie Duwez
- NANOCHEM, Research Unit MOLSYS, University of Liège, 4000 Liège, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Françoise Remacle
- Theoretical Physical Chemistry, Research Unit MOLSYS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Wang J, Zhang Q, Chen L. Microporous annealed particle hydrogels in cell culture, tissue regeneration, and emerging application in cancer immunotherapy. Am J Cancer Res 2025; 15:665-683. [PMID: 40084361 PMCID: PMC11897623 DOI: 10.62347/wrgw4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Microporous annealed particle (MAP) hydrogels consist of densely crosslinked and annealed hydrogel particles. Compared to common hydrogels, the inherent porosity within and among these hydrogel particles offers interconnected channels for substance exchange in addition to sufficient growth space for cells, thereby forming a three-dimensional culture system that highly mimics the in vivo microenvironment. Such characteristics enable MAP hydrogels to adapt to various requirements of biomedical applications, along with their excellent injectability and mechanical properties. This review initially provides a comprehensive summary of the fabrication methods and material types of MAP hydrogels, alongside an assessment of their mechanical properties and porosity. In vitro studies are evaluated based on the impact of MAP hydrogels on cellular behaviors, focusing on cell proliferation, differentiation, migration, activity, and phenotype. In vivo research highlights the promising applications of MAP hydrogels in tissue regeneration, as well as their innovative use in cancer immunotherapy. Current challenges and future research directions are outlined, underscoring the potential of MAP hydrogels to significantly improve clinical outcomes in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Junjie Wang
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and TechnologyShanghai 200093, China
| | - Qin Zhang
- Medical Engineering Department of Northern Jiangsu People’s HospitalYangzhou 225009, Jiangsu, China
| | - Liwen Chen
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and TechnologyShanghai 200093, China
| |
Collapse
|
3
|
Chen S, Lee CJM, Tan GSX, Ng PR, Zhang P, Zhao J, Novoselov KS, Andreeva DV. Ultra-Tough Graphene Oxide/DNA 2D Hydrogel with Intrinsic Sensing and Actuation Functions. Macromol Rapid Commun 2025; 46:e2400518. [PMID: 39101702 DOI: 10.1002/marc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Hydrogel devices with mechanical toughness and tunable functionalities are highly desirable for practical long-term applications such as sensing and actuation elements for soft robotics. However, existing hydrogels have poor mechanical properties, slow rates of response, and low functionality. In this work, two-dimensional hydrogel actuators are proposed and formed on the self-assembly of graphene oxide (GO) and deoxynucleic acid (DNA). The self-assembly process is driven by the GO-induced transition of double stranded DNA (dsDNA) into single stranded DNA (ssDNA). Thus, the hydrogel's structural unit consists of two layers of GO covered by ssDNA and a layer of dsDNA in between. Such heterogeneous architectures stabilized by multiple hydrogen bondings have Young's modulus of up to 10 GPa and rapid swelling rates of 4.0 × 10-3 to 1.1 × 10-2 s-1, which surpasses most types of conventional hydrogels. It is demonstrated that the GO/DNA hydrogel actuators leverage the unique properties of these two materials, making them excellent candidates for various applications requiring sensing and actuation functions, such as artificial skin, wearable electronics, bioelectronics, and drug delivery systems.
Collapse
Affiliation(s)
- Siyu Chen
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Chang Jie Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Gladys Shi Xuan Tan
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pei Rou Ng
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pengxiang Zhang
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Jinpei Zhao
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| |
Collapse
|
4
|
van der Tol JJB, Hafeez S, Bänziger APG, Su H, Heuts JPA, Meijer EW, Vantomme G. Supramolecular Polymer Additives as Repairable Reinforcements for Dynamic Covalent Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410723. [PMID: 39417726 PMCID: PMC11619224 DOI: 10.1002/adma.202410723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Employing rigid (in)organic materials as reinforcement for dynamic covalent networks (DCNs) is an effective approach to develop high-performance materials. Yet, recycling of these materials after failure often necessitates inefficient chemical reprocessing or inevitably alters their performance due to unrepairable inert components. Here, a non-covalent reinforcement strategy is presented by introducing a supramolecular additive to a DCN that can reversibly depolymerize and reform on demand, therefore acting as an adaptive and repairable reinforcement. The strong hydrogen-bonding interactions in the supramolecular polymer of triazine-1,3,5-tribenzenecarboxamide (S-T) strengthen the DCN at room temperature, while its non-covalent nature allows for easy one-pot reprocessing at high temperatures. Depending on wether S-T is covalently bond to the DCN or not, it can play either the role of compatibilizer or filler, providing a synthetic tool to control the relaxation dynamics, reprocessability and mechanical properties. Moreover, the S-T reinforcement can be chemically recovered with high yield and purity, showcasing the recyclability of the composite. This conceptually novel supramolecular reinforcement strategy with temperature-controlled dynamics highlights the potential of supramolecular polymer additives to replace conventional unrepairable reinforcements.
Collapse
Affiliation(s)
- Joost J. B. van der Tol
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Shahzad Hafeez
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Andy P. G. Bänziger
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Hao Su
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Johan P. A. Heuts
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| |
Collapse
|
5
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
6
|
Pourbadiei B, Monghari MAA, Khorasani HM, Pourjavadi A. A light-responsive wound dressing hydrogel: Gelatin based self-healing interpenetrated network with metal-ligand interaction by ferric citrate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112750. [PMID: 37419056 DOI: 10.1016/j.jphotobiol.2023.112750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Interpenetrated network (IPN) hydrogels with desired mechanical properties were prepared based on gelatin. A copolymer of dimethyl aminoethyl methacrylate (DMAEMA) with 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) in gelatin was chemically cross-linked with methylene bis acrylamide (MBA) to form a semi-IPN hydrogel. Also, IPN hydrogel is fabricated from the AMPS-co-DMAEMA and gelatin in the presence of ferric ions with both chemical and physical cross-linkers. According to the compression test, the metal-ligand interaction has a remarkable impact on the mechanical strength of hydrogel. Ferric ions caused a decrease in the pores size confirmed by the SEM images of hydrogels, resulting in preserving its mechanical stability during the swelling test due to a more robust structure of hydrogel. Ferric to ferrous ions reduction is observed under visible light irradiation, which results in a light-sensitive hydrogel with a higher rate of biodegradation compared to semi-IPN hydrogels. MTT assay results implied that the synthesized hydrogels are non-toxic for the L-929 cell line. Also, for more detailed investigations, histological studies are conducted as in vivo tests. With regards to the improvements of mechanical properties harnessed in IPN hydrogels by ferric ions along with the extraordinary self-healing capability, IPNs would be considered an appropriate option for tissue engineering.
Collapse
Affiliation(s)
- Behzad Pourbadiei
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | | | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran.
| |
Collapse
|
7
|
Cerdan K, Gandara-Loe J, Arnauts G, Vangramberen V, Ginzburg A, Ameloot R, Koos E, Van Puyvelde P. On the gelation of humins: from transient to covalent networks. SOFT MATTER 2023; 19:2801-2814. [PMID: 36995046 DOI: 10.1039/d2sm01506d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humins are a by-product of many acid-catalyzed biorefinery processes converting polysaccharides into platform chemicals. The valorization of humin residue to increase the profit of biorefinery operations and reduce waste is a field that is growing interest as the production of humins continues to increase. This includes their valorization in materials science. For successful processing of humin-based materials, this study aims to understand the thermal polymerization mechanisms of humins from a rheological perspective. Thermal crosslinking of raw humins leads to an increase in their molecular weight, which in turn leads to the formation of a gel. Humin's gels structure combines physical (thermally reversible) and chemical (thermally irreversible) crosslinks, and temperature plays an essential role in the crosslink density and the gel properties. High temperatures delay the formation of a gel due to the scission of physicochemical interactions, drastically decreasing their viscosity, whereas upon cooling a stronger gel is formed combining the recovered physicochemical bonds and the newly created chemical crosslinks. Thus, a transition from a supramolecular network to a covalently crosslinked network is observed, and properties such as the elasticity or reprocessability of humin gels are influenced by the stage of polymerization.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Jesus Gandara-Loe
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Giel Arnauts
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Vedran Vangramberen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Anton Ginzburg
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SmaRT), Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Rob Ameloot
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Erin Koos
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| |
Collapse
|
8
|
Lei K, Chen M, Wang X, Gao J, Zhang J, Li G, Bao J, Li Z, Li J. Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement. J Mater Chem B 2022; 10:9188-9201. [PMID: 36314575 DOI: 10.1039/d2tb02015g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Engineered hydrogels with excellent mechanical properties and multi-functionality have great potential as soft electronic skins, tissue substitutes and flexible robotic joints. However, it has been a challenge to construct multifunctional hydrogels, especially when integrating high stretchability, toughness and strength, low hysteresis, good self-healing and adhesion abilities into a hydrogel system simultaneously. Here, we successfully developed a structural hydrogel composed of a reversible covalently cross-link-based poly-N-(2-hydroxyethyl)acrylamide (PHEMAA) network and available plastically deformable casein micelles. Such a design enabled the reversible covalent cross-links and casein micelles to enhance energy dissipation and toughen the PHEMAA/casein hybrid hydrogel synergistically. More importantly, the hydrogel could respond to the imposed strains reversibly by cross-link and micelle deformation induced-network reconstitution, which led to low hysteresis of the hydrogels. The recoverable gel networks still exhibited their effects on energy dissipation at the stress-focused area, endowing the hydrogels with fatigue resistance. As a result, the hydrogels exhibited a compressive strength of 36.5 MPa, high stretchability (1460%), high toughness (∼5.98 MJ m-3), low hysteresis (<30%) and fatigue resistance with almost completely overlapped hysteresis curves during 10 loading cycles. In addition, the introduction of casein micelles and reversible covalent bonding endowed the elastomer hydrogels with high adhesivity, self-healing abilities and biocompatibility.
Collapse
Affiliation(s)
- Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| | - Meijun Chen
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jingpi Gao
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| | - Jianbo Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| | - Jianfeng Bao
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| |
Collapse
|
9
|
Stretchable elastomers with self-healing and shape memory properties based on functionalized TMC and DLLA copolymers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Hu L, Fan S, Huang L, Bui VT, Tran T, Chen K, Ding Y, Swihart MT, Lin H. Supramolecular Polymer Networks of Ion-Coordinated Polybenzimidazole with Simultaneously Improved H 2 Permeability and H 2/CO 2 Selectivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Liang Huang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Vinh T. Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thien Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
He D, Wang Z, Zeng X, Fan J, Ren L, Du G, Sun R, Zeng X. Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33912-33921. [PMID: 35849067 DOI: 10.1021/acsami.2c09761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft elastomers have attracted wide applications, such as soft electronic devices and soft robotics, due to their ability to undergo large deformation with a small external force. Most elastomers suffer from poor toughness and thermal conductivity, which limits their use. The addition of inorganic fillers can enhance the thermal conductivity and toughness, but it deteriorates the softness (low Young's modulus and high stretchability). Integrating thermal conductivity, toughness, and softness into one elastomer is still a challenge. Here, we report a strategy of interfacial coordination interaction to achieve soft elastomer composites with high thermal conductivity and high toughness. We demonstrate the strategy by using poly(lipoic acid) elastomer and silver-coated aluminum filler as model, where silver-sulfur coordination cross-links are formed at the interface. The resultant elastomer composite shows high streachability (450%), high thermal conductivity (2.35 W m-1 K-1), low modulus (321 kPa), and high toughness (3496 J m-2), which cannot be achieve in existing elastomers. The time domain thermoreflectance technique demonstrates that the silver-sulfur coordination interaction lowers the interfacial thermal resistance, resulting in enhanced thermal conductivity of the elastomer composites. The excellent softness stems from lower bonding energy of the silver-sulfur coordination cross-links compared with covalent chemical cross-links. The high toughness also benefits from the interfacial silver-sulfur coordination interaction that can dissipate more energy upon deformation. We further demonstrate the potential application of the thermally conductive, tough, and soft elastomer composites for thermal management of chip and soft electronic devices.
Collapse
Affiliation(s)
- Dongyi He
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenyu Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiangliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoping Du
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
12
|
A Supramolecular Hydrogel Based on Copolymers of Acrylic Acid and Maleic Anhydride Derivatives with Terpyridine Motifs. Polymers (Basel) 2022; 14:polym14142857. [PMID: 35890633 PMCID: PMC9323152 DOI: 10.3390/polym14142857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/16/2023] Open
Abstract
A kind of terpyridine derivative (NH2-Tpy) in which the amino was incorporated by a short alkyl chain was synthesized. Through grafting of terpyridine units into the hydrophilic copolymers of maleic anhydride and acrylic acid PAAMa via the reaction of the amino groups in NH2-Tpy and the maleic anhydride units, a series of gelator polymers—P1, P2, and P3—containing different contents of terpyridine units was synthesized. Under coordination of Ni2+ and terpyridine ligands in linear polymers, the supramolecular hydrogels H1, H2, and H3 with different cross-linking degrees were prepared. The linear polymers P1–P3 had a strong absorption peak at about 290 nm in the UV-vis spectra which was attributed to π–π* transition, and there was a new peak at about 335 nm led by the metal-to-ligands charge transfer (MLCT) when coordinated with Ni2+ ions. According to the rheological behaviors, the storage modulus (G′) was larger than the loss modulus (G′′). These hydrogels showed typical gel-like characteristics when the terpyridine content of the hydrogels exceeded 10%, and the hydrogels showed liquid-like characteristics when the terpyridine content of the hydrogels was less than 7%. The results of the micromorphological investigation of the xerogels from SEM illustrated the metal–terpyridine coordination cross-linking could have an important influence on the microstructures of the resulting hydrogels. Furthermore, these hydrogels based on supramolecular cross-links exhibited reversible solution–gel transition at different environmental temperatures. At the same time, the equilibrium swelling of the supramolecular hydrogels was 8.0–12.3 g/g, which increased with the decrease in the content of the terpyridine units in the resulting hydrogels.
Collapse
|
13
|
Liu Y, Hu J, Xiao Z, Jin X, Jiang C, Yin P, Tang L, Sun T. Dynamic behavior of tough polyelectrolyte complex hydrogels from chitosan and sodium hyaluronate. Carbohydr Polym 2022; 288:119403. [DOI: 10.1016/j.carbpol.2022.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/02/2022]
|
14
|
Li D, Göckler T, Schepers U, Srivastava S. Polyelectrolyte Complex-Covalent Interpenetrating Polymer Network Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Defu Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tobias Göckler
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ute Schepers
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Yang H, van Ruymbeke E, Fustin CA. Influence of Network Topology on the Viscoelastic Properties of Double Dynamics Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Yang
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| | - Evelyne van Ruymbeke
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
16
|
Interplay of Crosslinking Structures and Segmental Dynamics in Solid-Liquid Elastomers. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Li Z, Cai J, Wei M, Chen J. An UV-photo and ionic dual responsive interpenetrating network hydrogel with shape memory and self-healing properties. RSC Adv 2022; 12:15105-15114. [PMID: 35693233 PMCID: PMC9116958 DOI: 10.1039/d2ra00619g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Shape memory hydrogels have attracted extensive attention in fields such as artificial tissues, biomimetic devices and diagnostics, and intelligent biosensors. However, the practical applications were hindered by the absence of self-healing capability and multi-stimuli-responsiveness. To address these issues, we developed a shape memory hydrogel with self-healing and dual stimuli-response performance. The hydrogel system was constructed via an interpenetrating network consisting of in situ radical polymerization and host-guest interaction. The hydrogel exhibited rapid self-healing property, which can be stretched after self-healing for 1 min at 25 °C. Besides, the hydrogel displayed varied swelling performance in different light or solvent conditions. Moreover, the hydrogel showed a dual stimuli-responsive shape memory effect to ultraviolet (UV) light and ionic strength in 1 min. Such a shape memory hydrogel with self-healing ability and multi-stimuli-responsive properties will offer an option toward intelligent soft materials for biomedical and bionic research.
Collapse
Affiliation(s)
- Ziyi Li
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| | - Jiwei Cai
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| | - Miaohan Wei
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| | - Juncheng Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| |
Collapse
|
18
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Paciolla M, Likos CN, Moreno AJ. Validity of Effective Potentials in Crowded Solutions of Linear and Ring Polymers with Reversible Bonds. Macromolecules 2022; 55:2659-2674. [PMID: 35444345 PMCID: PMC9011144 DOI: 10.1021/acs.macromol.1c02610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Indexed: 11/28/2022]
Abstract
![]()
We perform simulations
to compute the effective potential between
the centers-of-mass of two polymers with reversible bonds. We investigate
the influence of the topology on the potential by employing linear
and ring backbones for the precursor (unbonded) polymer, finding that
it leads to qualitatively different effective potentials. In the linear
and ring cases the potentials can be described by Gaussians and generalized
exponentials, respectively. The interactions are more repulsive for
the ring topology, in analogy with known results in the absence of
bonding. We also investigate the effect of the specific sequence of
the reactive groups along the backbone (periodic or with different
degrees of randomness), establishing that it has a significant impact
on the effective potentials. When the reactive sites of both polymers
are chemically orthogonal so that only intramolecular bonds are possible,
the interactions become more repulsive the closer to periodic the
sequence is. The opposite effect is found if both polymers have the
same types of reactive sites and intermolecular bonds can be formed.
We test the validity of the effective potentials in solution, in a
broad range of concentrations from high dilution to far above the
overlap concentration. For this purpose, we compare simulations of
the effective fluid and test particle route calculations with simulations
of the real all-monomer system. Very good agreement is found for the
reversible linear polymers, indicating that unlike in their nonbonding
counterparts many-body effects are minor even far above the overlap
concentration. The agreement for the reversible rings is less satisfactory,
and at high concentration the real system does not show the clustering
behavior predicted by the effective potential. Results similar to
the former ones are found for the partial self-correlations in ring/linear
mixtures. Finally, we investigate the possibility of creating, at
high concentrations, a gel of two interpenetrated reversible networks.
For this purpose we simulate a 50/50 two-component mixture of reversible
polymers with orthogonal chemistry for the reactive sites, so that
intermolecular bonds are only formed between polymers of the same
component. As predicted by both the theoretical phase diagram and
the simulations of the effective fluid, the two networks in the all-monomer
mixture do not interpenetrate, and phase separation (demixing) is
observed instead.
Collapse
Affiliation(s)
- Mariarita Paciolla
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| |
Collapse
|
20
|
Peng S, Sun Y, Ma C, Duan G, Liu Z, Ma C. Recent advances in dynamic covalent bond-based shape memory polymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Dynamic covalent bond-based shape memory polymers (DCB-SMPs) are one of most important SMPs which have a wide potential application prospect. Different from common strong covalent bonds, DCBs own relatively weak bonding energy, similarly to the supramolecular interactions of noncovalent bonds, and can dynamically combine and dissociate these bonds. DCB-SMP solids, which can be designed to respond for different stimuli, can provide excellent self-healing, good reprocessability, and high mechanical performance, because DCBs can obtain dynamic cross-linking without sacrificing ultrahigh fixing rates. Furthermore, besides DCB-SMP solids, DCB-SMP hydrogels with responsiveness to various stimuli also have been developed recently, which have special biocompatible soft/wet states. Particularly, DCB-SMPs can be combined with emerging 3D-printing techniques to design various original shapes and subsequently complex shape recovery. This review has summarized recent research studies about SMPs based on various DCBs including DCB-SMP solids, DCB-SMP hydrogels, and the introduction of new 3D-printing techniques using them. Last but not least, the advantages/disadvantages of different DCB-SMPs have been analyzed via polymeric structures and the future development trends in this field have been predicted.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials - Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| |
Collapse
|
21
|
Liu Z, Wei H, Liu Y, Li W, Li S, Wang G, Guo T. Fabrication and characterization of interpenetrating network hydrogels based on sequential amine‐anhydride reaction and photopolymerization in water. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zijun Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Yuhua Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Weikun Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Songmao Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| |
Collapse
|
22
|
Gabrielli V, Baretta R, Pilot R, Ferrarini A, Frasconi M. Insights into the Gelation Mechanism of Metal-Coordinated Hydrogels by Paramagnetic NMR Spectroscopy and Molecular Dynamics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Valeria Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Roberto Baretta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Roberto Pilot
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
23
|
He J, Yuan Y, Tang L, Qu J. Schiff base fluorescent hydrogel containing acylhydrazone structure and pyridine ring with multifunction. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinde He
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Ye Yuan
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Liuyan Tang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
24
|
Zhang X, Tang Y, Wang P, Wang Y, Wu T, Li T, Huang S, Zhang J, Wang H, Ma S, Wang L, Xu W. A review of recent advances in metal ion hydrogels: mechanism, properties and their biological applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj02843c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms, common properties and biological applications of different types of metal ion hydrogels are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Puying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanyan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tingting Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tao Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shuo Huang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|
25
|
Wanasinghe SV, De Alwis Watuthanthrige N, Konkolewicz D. Interpenetrated triple network polymers: synergies of three different dynamic bonds. Polym Chem 2022. [DOI: 10.1039/d2py00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triply interpenetrated networks were made with a unique dynamic linker in each network. The linkers were hydrogen bonds, boronic esters and Diels–Alder adducts. Triply dynamic materials had superior properties compared to doubly dynamic analogues.
Collapse
Affiliation(s)
| | | | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
26
|
Wu S, Chen Q. Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
27
|
Scalet JM, Suekama TC, Jeong J, Gehrke SH. Enhanced Mechanical Properties by Ionomeric Complexation in Interpenetrating Network Hydrogels of Hydrolyzed Poly (N-vinyl Formamide) and Polyacrylamide. Gels 2021; 7:80. [PMID: 34209543 PMCID: PMC8293209 DOI: 10.3390/gels7030080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/02/2023] Open
Abstract
Tough hydrogels were made by hydrolysis of a neutral interpenetrating network (IPN) of poly (N-vinyl formamide) PNVF and polyacrylamide (PAAm) networks to form an IPN of polyvinylamine (PVAm) and poly (acrylic acid) (PAAc) capable of intermolecular ionic complexation. Single network (SN) PAAm and SN PNVF have similar chemical structures, parameters and physical properties. The hypothesis was that starting with neutral IPN networks of isomeric monomers that hydrolyze to comparable extents under similar conditions would lead to formation of networks with minimal phase separation and maximize potential for charge-charge interactions of the networks. Sequential IPNs of both PNVF/PAAm and PAAm/PNVF were synthesized and were optically transparent, an indication of homogeneity at submicron length scales. Both IPNs were hydrolyzed in base to form PVAm/PAAc and PAAc/PVAm IPNs. These underwent ~5-fold or greater decrease in swelling at intermediate pH values (3-6), consistent with the hypothesis of intermolecular charge complexation, and as hypothesized, the globally neutral, charge-complexed gel states showed substantial increases in failure properties upon compression, including an order of magnitude increases in toughness when compared to their unhydrolyzed states or the swollen states at high or low pH values. There was no loss of mechanical performance upon repeated compression over 95% strain.
Collapse
Affiliation(s)
| | | | | | - Stevin H. Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA; (J.M.S.); (T.C.S.); (J.J.)
| |
Collapse
|
28
|
Ghiassinejad S, Mortensen K, Rostamitabar M, Malineni J, Fustin CA, van Ruymbeke E. Dynamics and Structure of Metallo-supramolecular Polymers Based on Short Telechelic Precursors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sina Ghiassinejad
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Matin Rostamitabar
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jagadeesh Malineni
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
29
|
|
30
|
Hillmyer MA. Editorial. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Yu CH, Chiang PY, Yeh YC. Di(2-picolyl)amine-functionalized poly(ethylene glycol) hydrogels with tailorable metal–ligand coordination crosslinking. Polym Chem 2021. [DOI: 10.1039/d1py01325d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of metallo-hydrogels has been developed using di(2-picolyl)amine (DPA)-functionalized 4-arm polyethylene glycol (4A-PEG-DPAn) polymers crosslinked by metal–ligand coordination.
Collapse
Affiliation(s)
- Cheng-Hsuan Yu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Chiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Aeridou E, Díaz Díaz D, Alemán C, Pérez-Madrigal MM. Advanced Functional Hydrogel Biomaterials Based on Dynamic B–O Bonds and Polysaccharide Building Blocks. Biomacromolecules 2020; 21:3984-3996. [DOI: 10.1021/acs.biomac.0c01139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eleni Aeridou
- Departament d’Enginyeria Quı́mica, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Barcelona, Spain
| | - David Díaz Díaz
- Departamento de Quı́mica Orgánica, Universidad de La Laguna, Avda. Astrofı́sico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofı́sico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Carlos Alemán
- Departament d’Enginyeria Quı́mica, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria M. Pérez-Madrigal
- Departament d’Enginyeria Quı́mica, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|