1
|
Li Y, Yu H, Li H, Sun S, Yu R, Xu Y. Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response. Molecules 2025; 30:1121. [PMID: 40076344 PMCID: PMC11902262 DOI: 10.3390/molecules30051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Poly(2-oxazoline) (POx), a typical thermoresponsive polymer with good biocompatibility, was conjugated with environment-sensitive tetraphenylenethene (TPE) and hydroxyphenylbenzoxazole (HBO) to achieve unique thermometer readings. Through phase transition induced by temperature, the thermometers can measure temperature in biologic range with ratiometric fluorescence response, ultrahigh sensitivity and good reversibility. Moreover, the thermometer can be used to measure the change in temperature with large fluorescence difference in living cells.
Collapse
Affiliation(s)
| | | | | | | | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.Y.); (H.L.); (S.S.)
| | - Yongqian Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.Y.); (H.L.); (S.S.)
| |
Collapse
|
2
|
Liu F, Qu P, Weiss J, Guo K, Weck M. Substrate Channeling in Compartmentalized Nanoreactors. Macromolecules 2024; 57:6805-6815. [PMID: 39071043 PMCID: PMC11270995 DOI: 10.1021/acs.macromol.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Thermo- and photoresponsive nanoreactors based on shell cross-linked micelles (SCMs) for the rhodium-catalyzed asymmetric transfer hydrogenation (ATH) of ketones have been developed from poly(2-oxazoline) triblock terpolymers. The nanoreactors incorporate thermoresponsive poly(2-isopropyl-2-oxazoline) as the hydrophilic corona and are covalently cross-linked with a photoswitchable spiropyran molecule. UV irradiation or changes in temperature trigger morphology switching of the polymer-based nanoreactors that alters the hydrophobicity in separate layers of the SCMs, resulting in dynamic substrate selectivity of the ATH in water. Control experiments and kinetic studies show that the thermoresponsive outer layer induces the gated behavior for more hydrophobic substrates, whereas the photoresponsive cross-linking layer induces the gated behavior for less hydrophobic substrates. The nanoreactors mimic the multichannels in Nature, transporting substrates and reagents into the catalytic core which can be controlled through external triggers such as temperature and light wavelengths. Additionally, the nanoreactors can be easily recovered and reused with continued high activity and selectivities.
Collapse
Affiliation(s)
- Fangbei Liu
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| | | | - Jeremy Weiss
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| | - Kunhao Guo
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| | - Marcus Weck
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| |
Collapse
|
3
|
Nabiyan A, Jin Z, Brauer DS. Temperature-responsive bioactive glass/polymer hybrids allow for tailoring of ion release. SOFT MATTER 2024. [PMID: 39012006 DOI: 10.1039/d4sm00536h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Intelligent biomaterials react to their surrounding conditions, and hybrid materials are acknowledged for their remarkable customizability, achieved through the meticulous control of nanoscale interactions between organic and inorganic phases. Bioactive glasses (BG) are used clinically to regenerate bone due to their degradability, ion release, and capacity to stimulate the formation of new body tissue. In our study, we developed a core-shell hybrid system using sol-gel derived BG nano particles as the core and poly (N-isopropyl acrylamide) (PNIPAM) as the shell. This approach aims to combine the therapeutic ion release of BG with the temperature-responsive properties of PNIPAM. Our size analysis by dynamic light scattering at varying temperatures shows the formation of BG aggregates driven by the coil-to-globule transition of PNIPAM on the BG surface. This transition also affected the ion release from the core-shell system through an increase in ion transport through the porous hybrid network. Our study therefore illustrates the ability to adjust the dissolution properties of the core-shell system via surrounding temperature and, thus, control the release of Ca ions from the BG.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Lessingstraße 12 (AWZ), 07743 Jena, Germany.
| | - Zhaorui Jin
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Lessingstraße 12 (AWZ), 07743 Jena, Germany.
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Lessingstraße 12 (AWZ), 07743 Jena, Germany.
| |
Collapse
|
4
|
Yao Y, Zhang L, Zhang S, Huang X, Feng C, Lin S, Xu B. Morphologically Tunable Rectangular Platelets Self-Assembled from Diblock Molecular Brushes Containing Azopyridine Pendants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18880-18888. [PMID: 38084706 DOI: 10.1021/acs.langmuir.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional (2D) platelet structures are of growing importance as building blocks for the preparation of optical and electrical devices. However, the creation of morphologically tunable rectangular platelets through polymer self-assembly still remains a challenge. Herein, we describe a rational strategy for the fabrication of 2D rectangular platelets by stacking azopyridine-containing diblock molecular brushes in two dimensions in a selective solvent. Amphiphilic PEG-co-(PtBA-g-PAzoPy) DMBs with poly(ethylene glycol) (PEG) block, poly(t-butyl acrylate) (PtBA) backbone, and poly(6-(4-(4-pyridyazo)phenoxy)-hexyl methacrylate) (PAzoPy) brush were synthesized by sequential reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization. Various rectangular platelets were obtained via the solution self-assembly of PEG-co-(PtBA-g-PAzoPy) through a heating-cooling-aging process in which the morphology and size of platelets could be controlled by adjusting the composition of DMBs as well as the solvent polarity. In addition, we investigated the metal chelation ability and H-bonding-assisted co-assembly capability of PEG-co-(PtBA-g-PAzoPy). The results displayed that 2D hybrids and flower-like platelets were formed, respectively. Our study presents an efficient method to fabricate rectangular platelets with tunable morphologies.
Collapse
Affiliation(s)
- Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Chun Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
5
|
Nabiyan A, Muttathukattil A, Tomazic F, Pretzel D, Schubert US, Engel M, Schacher FH. Self-Assembly of Core-Shell Hybrid Nanoparticles by Directional Crystallization of Grafted Polymers. ACS NANO 2023; 17:21216-21226. [PMID: 37721407 DOI: 10.1021/acsnano.3c05461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Nanoparticle self-assembly is an efficient bottom-up strategy for the creation of nanostructures. In a typical approach, ligands are grafted onto the surfaces of nanoparticles to improve the dispersion stability and control interparticle interactions. Ligands then remain secondary and usually are not expected to order significantly during superstructure formation. Here, we investigate how ligands can play a more decisive role in the formation of anisotropic inorganic-organic hybrid materials. We graft poly(2-iso-propyl-2-oxazoline) (PiPrOx) as a crystallizable shell onto SiO2 nanoparticles. By varying the PiPrOx grafting density, both solution stability and nanoparticle aggregation behavior can be controlled. Upon prolonged heating, anisotropic nanostructures form in conjunction with the crystallization of the ligands. Self-assembly of hybrid PiPrOx@SiO2 (shell@core) nanoparticles proceeds in two steps: First, the rapid formation of amorphous aggregates occurs via gelation, mediated by the interaction between nanoparticles through grafted polymer chains. As a second step, slow radial growth of fibers was observed via directional crystallization, governed by the incorporation of crystalline ribbons formed from free polymeric ligands in combination with crystallization of the covalently attached ligand shell. Our work reveals how crystallization-driven self-assembly of ligands can create intricate hybrid nanostructures.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Aswathy Muttathukattil
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Federico Tomazic
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - David Pretzel
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Felix H Schacher
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
6
|
Gineste S, Mingotaud C. Double-hydrophilic block copolymer-metal ion associations: Structures, properties and applications. Adv Colloid Interface Sci 2023; 311:102808. [PMID: 36442323 DOI: 10.1016/j.cis.2022.102808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Hybrid polyionic complexes (HPICs), constructed from double-hydrophilic block copolymers and metal ions, have been largely developed with increasing interest in the past decade in the fields of catalysis, materials science and biological applications. The chemical natures of both blocks are very versatile, but one block should be able to interact with ions, and the second one should be neutral. Many metals have been used to form HPICs, which have, in their simplest architectural form, a core-shell structure of a few tens of nanometers in radius with an external shell made of the neutral block of the copolymer. In this review, we focus our discussion on the stability, shape, size and inner structure of these hybrid micelles. We then describe the most recent applications of HPICs, as reported in the literature, and point out the current challenges, missing structural information and future perspectives for this class of organized structures.
Collapse
Affiliation(s)
- Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
7
|
Pincer complex immobilization onto different supports: Strategies and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Lv Y, Zhao Y, Liu Y, Zhou Z, Shen Y, Jiang L. Self-Assembling Oligo(2-oxazoline) Organogelators for the Encapsulation and Slow Release of Bioactive Volatiles. ACS OMEGA 2022; 7:27523-27531. [PMID: 35967068 PMCID: PMC9366986 DOI: 10.1021/acsomega.2c02905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Herein, we report a class of distinctive supramolecular nanostructures in situ-generated from the cationic ring-opening polymerization of a particular 2-oxazoline monomer, i.e., 2-(N-tert-butyloxycarbonylaminomethyl)-2-oxazoline (Ox1). Driven by side-chain hydrogen bonding between neighboring molecules and van der Waals interactions, the growing oligomers of Ox1 precipitate in the form of macroscopic platelets when the degree of polymerization reaches 5-7. A similar self-assembly occurred in the block copolymerization of 2-ethyl-2-oxazoline (EtOx) or 2-pentyl-2-oxazoline (PeOx) and Ox1 as the second monomer. These polymeric aggregates were found to disassemble into rod-like nanoparticles under appropriate conditions, and to form stable organogels in some polar solvents like dimethylformamide as well as in natural liquid fragrances such as (R)-carvone, citronellal, and (R)-limonene. Scanning electron microscopy revealed that the morphology of their xerogels was solvent-dependent, mainly with a lamellar or fibrous structure. The rheology measurements confirmed the as-obtained organogels feature an obvious thixotropic character. The storage modulus was about 7-10 times higher than the loss modulus, indicating the physical crosslinking in the gel. The fragrance release profiles showed that the presented supramolecular gel system exhibits good sustained-release effect for the loaded bioactive volatiles.
Collapse
Affiliation(s)
- Yichao Lv
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Zhao
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhang Liu
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liming Jiang
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Sun H, Chen S, Li X, Leng Y, Zhou X, Du J. Lateral growth of cylinders. Nat Commun 2022; 13:2170. [PMID: 35449206 PMCID: PMC9023456 DOI: 10.1038/s41467-022-29863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The precise control of the shape, size and microstructure of nanomaterials is of high interest in chemistry and material sciences. However, living lateral growth of cylinders is still very challenging. Herein, we propose a crystallization-driven fusion-induced particle assembly (CD-FIPA) strategy to prepare cylinders with growing diameters by the controlled fusion of spherical micelles self-assembled from an amphiphilic homopolymer. The spherical micelles are heated upon glass transition temperature (Tg) to break the metastable state to induce the aggregation and fusion of the amorphous micelles to form crystalline cylinders. With the addition of extra spherical micelles, these micelles can attach onto and fuse with the cylinders, showing the living character of the lateral growth of cylinders. Computer simulations and mathematical calculations are preformed to reveal the total energy changes of the nanostructures during the self-assembly and CD-FIPA process. Overall, we demonstrated a CD-FIPA concept for preparing cylinders with growing diameters.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China.
| | - Shuai Chen
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China. .,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China.
| |
Collapse
|
10
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
11
|
Su Y, Jiang Y, Liu L, Xie Y, Chen S, Wang Y, O’Reilly RK, Tong Z. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yawei Su
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yikun Jiang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Shichang Chen
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongjun Wang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
13
|
Garcia-Hernandez JD, Parkin H, Ren Y, Zhang Y, Manners I. Hydrophobic Cargo Loading at the Core-Corona Interface of Uniform, Length-Tunable Aqueous Diblock Copolymer Nanofibers with a Crystalline Polycarbonate Core. Polym Chem 2022. [DOI: 10.1039/d2py00395c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1D core-shell nanoparticles are considered to be among the most promising for biomedical applications such as drug delivery. The versatile living crystallization-driven self-assembly (CDSA) seeded growth method allows access to...
Collapse
|
14
|
Oleszko-Torbus N. Recent Advances in Modifications, Properties and Applications of 2-Isopropyl-2-Oxazoline (Co)Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1993252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Ben-Miled A, Nabiyan A, Wondraczek K, Schacher FH, Wondraczek L. Controlling Growth of Poly (Triethylene Glycol Acrylate- Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature. Polymers (Basel) 2021; 13:polym13101633. [PMID: 34069828 PMCID: PMC8157298 DOI: 10.3390/polym13101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate-co-spiropyran acrylate) (P (TEGA-co-SPA)) copolymer containing 12-14% of spiropyran at the silica-water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA-co-SPA)-rich wetting layer growing on the sensor, from which we deduced the characteristic coil-to-globule transition temperature, corresponding to the lower critical solution temperature (LCST) of the PTEGA part. We show that the coil-to-globule transition of the adsorbed copolymer being exposed to visible or UV light shifts to lower LCST as compared to the bulk solution: the transition temperature determined acoustically on the surface is 4 to 8 K lower than the cloud point temperature reported by UV/VIS spectroscopy in aqueous solution. We attribute our findings to non-equilibrium effects caused by confinement of the copolymer chains on the surface. Thermal stimuli and light can be used to manipulate the film formation process and the film's conformational state, which affects its subsequent response behavior.
Collapse
Affiliation(s)
- Aziz Ben-Miled
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, D-07743 Jena, Germany;
| | - Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany; (A.N.); (F.H.S.)
| | - Katrin Wondraczek
- Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745 Jena, Germany;
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany; (A.N.); (F.H.S.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, D-07743 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9-48500
| |
Collapse
|
16
|
Finnegan JR, Pilkington EH, Alt K, Rahim MA, Kent SJ, Davis TP, Kempe K. Stealth nanorods via the aqueous living crystallisation-driven self-assembly of poly(2-oxazoline)s. Chem Sci 2021; 12:7350-7360. [PMID: 34163824 PMCID: PMC8171341 DOI: 10.1039/d1sc00938a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
The morphology of nanomaterials critically influences their biological interactions. However, there is currently a lack of robust methods for preparing non-spherical particles from biocompatible materials. Here, we combine 'living' crystallisation-driven self-assembly (CDSA), a seeded growth method that enables the preparation of rod-like polymer nanoparticles, with poly(2-oxazoline)s (POx), a polymer class that exhibits 'stealth' behaviour and excellent biocompatibility. For the first time, the 'living' CDSA process was carried out in pure water, resulting in POx nanorods with lengths ranging from ∼60 to 635 nm. In vitro and in vivo study revealed low immune cell association and encouraging blood circulation times, but little difference in the behaviour of POx nanorods of different length. The stealth behaviour observed highlights the promising potential of POx nanorods as a next generation stealth drug delivery platform.
Collapse
Affiliation(s)
- John R Finnegan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville Victoria 3010 Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, Monash University Melbourne Victoria 3004 Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney NSW 2052 Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville Victoria 3010 Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
- Materials Science and Engineering, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
17
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
18
|
Max JB, Nabiyan A, Eichhorn J, Schacher FH. Triple-Responsive Polyampholytic Graft Copolymers as Smart Sensors with Varying Output. Macromol Rapid Commun 2020; 42:e2000671. [PMID: 33368771 DOI: 10.1002/marc.202000671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Three triggers result in two measurable outputs from polymeric sensors: multiresponsive polyampholytic graft copolymers respond to pH-value and temperature, as well as the type and concentration of metal cations and therefore, allow the transformation of external triggers into simply measurable outputs (cloud point temperature (TCP ) and surface plasmon resonance (SPR) of encapsulated silver nanoparticles). The synthesis relies on poly(dehydroalanine) (PDha) as the reactive backbone and gives straightforward access to materials with tunable composition and output. In particular, a rather high sensitivity toward the presence of Cu2+ , Co2+ , and Pb2+ metal cations is found.
Collapse
Affiliation(s)
- Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Lessingstraße 8, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany.,Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Lessingstraße 8, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany.,Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Lessingstraße 8, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany.,Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Lessingstraße 8, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany.,Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
19
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
20
|
Sun H, Du J. Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic acid). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Sun
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
21
|
Nabiyan A, Schulz M, Neumann C, Dietzek B, Turchanin A, Schacher FH. Photocatalytically active block copolymer hybrid micelles from double hydrophilic block copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|