1
|
Yamazaki S, Aizawa T, Miyamae T. Correlation Between the Molecular-Level Behavior of Polyurethane on Oily Surfaces and Adhesive Strength. ACS OMEGA 2025; 10:17468-17475. [PMID: 40352516 PMCID: PMC12059937 DOI: 10.1021/acsomega.4c11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/03/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
Adhesive bonding is commonly used in various industrial fields. Among the various types of adhesives, polyurethane adhesives have unique properties, such as room-temperature curing, flexibility, and heat insulation, making them indispensable materials in the current automotive and aerospace industries. In these industries, adherends coated with mineral oil or press oil on their surfaces to prevent corrosion are often required, and bonding without degreasing is preferred. Hence, understanding the mechanism of surface adhesion in the presence of oil is crucial. This study aimed to understand the molecular behavior of oil at adherend interfaces and its impact on adhesion. The correlation between the behavior of silicone oil at polyurethane interfaces and adhesion strength was investigated using vibrational sum frequency generation (SFG) spectroscopy, an interface-specific vibrational spectroscopic technique. When polyurethane is cured at room temperature, the silicone oil present at the interface is absorbed into the bulk and disappears from the interface. After being absorbed into the polyurethane during room-temperature curing, the silicone oil remained near the interfacial region, and when the polyurethane was annealed to promote polymerization, it reappeared at the interface, resulting in a significant decrease in adhesion strength. These observations of the behavior of silicone oil at the polyurethane adhesive interface can be explained by the relationships between the solubility of silicone oil, the raw compounds of polyurethane, and polyurethane and provide significant insights into the reliability of adhesion on oily surfaces. They will also contribute to the design of curing behavior for the development of polyurethane adhesives with high adhesion strength to oil-covered adherend surfaces.
Collapse
Affiliation(s)
- Seito Yamazaki
- Graduate
School of Science and Engineering, Chiba
University, 1-33 Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Takahiro Aizawa
- Polyurethane
Research Laboratory, Tosoh Co., 1-8 Kasumi, Yokkaichi, Mie 510-8540, Japan
| | - Takayuki Miyamae
- Graduate
School of Science and Engineering, Chiba
University, 1-33 Inage-ku, Chiba, Chiba 263-8522, Japan
- Molecular
Chirality Research Center, 1-33 Inage-ku, Chiba-shi 263-8522, Japan
- Soft
Molecular Activation Research Center, 1-33 Inage-ku, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
2
|
Hu X, Li B, Xu Z, Ma YH, Han X, Hu L, Wang C, Wang N, Xu J, Sheng Z, Lu X. Molecular Structures of Poly(methyl methacrylate) at Different Buried Interfaces Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21291-21300. [PMID: 39316696 DOI: 10.1021/acs.langmuir.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Silica or calcium fluoride (CaF2) substrate-supported poly(methyl methacrylate) (PMMA) thin films as insulating layers are commonly used in photoelectric/photovoltaic devices to improve the efficiency or stability of these devices. However, a comparative investigation of molecular structures at buried PMMA/silica and PMMA/CaF2 interfaces under thermal stimuli remains unexplored. In this study, we qualitatively and quantitatively revealed different molecular orderings and orientations of PMMA at two interfaces before and after annealing using sum frequency generation (SFG) vibrational spectroscopy. SFG vibrations were carefully assigned by using various deuterated PMMAs. SFG results indicated that, at the buried PMMA/silica interface, the side OCH3 groups were prone to lie down before annealing and tended to stand up after annealing. In contrast, the case was the opposite at the buried PMMA/CaF2 interface. The relative hydrophobicity/hydrophilicity of the two substrates and the developed hydrogen bonds upon annealing at the buried PMMA/silica interface, which is absent at the CaF2 surface, are believed to be the driving forces for different interfacial molecular structures. This study benefits the molecular-level understanding of the interfacial local structural relaxation of polymers at buried interfaces and the rational design of photoelectric/photovoltaic devices from the molecular level.
Collapse
Affiliation(s)
- Xintong Hu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Bolin Li
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhaohui Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Linhua Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ningfang Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jinsheng Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhigao Sheng
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Zhang S, Fu N, Cui W, Peng S, Srivatsan N, Chen Z. Probing the Saltwater Immersion Effect on Buried Interfacial Structures between a Sealant and Adhesion Promoter at the Molecular Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39150881 DOI: 10.1021/acs.langmuir.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
In this research, we used sum frequency generation vibrational spectroscopy to investigate the buried interface of a thiol-epoxy model aerospace sealant in contact with a silane-based adhesion promoter (6111) following exposures to 3% saltwater at elevated temperatures and elevated temperatures alone. The results suggest that the saltwater caused a change at the interface between the adhesion promoter and sealant, while an elevated temperature of 60 °C itself did not affect the interfacial structure noticeably. Model hydrolyzed and nonhydrolyzed silanes were also used in the study to compare with the adhesion promoter 6111 to understand the interfacial behavior of main silane components in 6111 as well as their potential role in adhesion. The amino silane in 6111 likely segregates more at the sealant/adhesion promoter interface and interacts with the sealant compared to the vinyl silane. The results imply that the saltwater immersion process led to the disordering of the adhesion promoter/sealant interface (caused by interfacial structural randomization), which could potentially have implications for adhesion.
Collapse
Affiliation(s)
- Shuqing Zhang
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Na Fu
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | - Weibin Cui
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | - Shane Peng
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | | | - Zhan Chen
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Drake SM, Farnsworth AJ, Pinto G, Meyer G, Patterson JE. Mount for spectroscopic analysis of samples under sustained tensile stress. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:073911. [PMID: 39041903 DOI: 10.1063/5.0218027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Spectroscopic methods offer valuable insights into the molecular and structural changes induced by stress, but existing techniques are often unable to perform real-time measurements during deformation. A novel solid open mount design is presented that enables spectroscopic investigations of materials under sustained tensile stress while maintaining crucial alignment of the optical system. The mount design allows for sample movement in response to applied strain while maintaining the position of the sample plane, ensuring consistent and reliable spectroscopic measurements. The effectiveness of the mount design is demonstrated with vibrational sum-frequency generation measurements of an elastomer, cured hydroxyl-terminated polybutadiene, and a plastic, high-density polyethylene, taken before, during, and after tensile deformation. The application of this mount to other spectroscopic techniques is discussed. The ability to collect spectroscopic data during a stress event would provide valuable insights into the behavior of stressed materials.
Collapse
Affiliation(s)
- Shane M Drake
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Alexander J Farnsworth
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Gabriele Pinto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Gabriel Meyer
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - James E Patterson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
5
|
Xu Z, Li G, Zhang Y, Wu Y, Lu X. Probing Interfacial Aging of Model Adhesion Joints under a Hygrothermal Environment at a Molecular Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9280-9288. [PMID: 38619299 DOI: 10.1021/acs.langmuir.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Generally, for adhesive joints, the polar water molecules in humid environments can have a critical effect on the interfacial structures and structural evolution adjacent to the solid substrates. Regarding this, it is still a big challenge to detect and understand the interfacial hygrothermal aging process at the molecular level in real time and in situ. In this study, to trace the interfacial hygrothermal aging process of a classical epoxy formula containing diglycidyl ether of biphenyl A (DGEBA) and 2,2'-(ethylenedioxy) diethylamine (EDDA) with sapphire and fused silica in a typical hygrothermal environment (85 °C and 85% RH), sum frequency generation (SFG) vibrational spectroscopy was used to probe the molecular-level interfacial structural change over the time. The structural evolution dynamics at the buried epoxy/sapphire and epoxy/silica interfaces upon hygrothermal aging were revealed directly in situ. The interfacial delamination during hygrothermal aging was also elucidated from the molecular level. Upon hygrothermal aging, the interfacial CH signals, such as the ones from methyl, methylene, and phenyl groups, decreased significantly and the water OH signals increased substantially, indicating the water molecules had diffused into the interfaces and destroyed the original interactions between the epoxy formula and the substrates. Further analysis indicates that when the integrated signals in the CH range declined to their minimum and leveled off, the interfacial delamination happened. The tensile experiment proved the validity of these spectroscopic experimental results. Our study provides first-hand and molecular-level evidence on a direct correlation between the diffusion of the surrounding water molecules into the interface and the evolution/destruction of the interfacial structures during hygrothermal aging. More importantly, it is proved, SFG can be developed into a powerful tool to noninvasively reveal the local interfacial delamination in real time and in situ under extreme hygrothermal conditions, complemented by the mechanic test.
Collapse
Affiliation(s)
- Zhaohui Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gaoming Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Han F, Chang Z, Wang R, Yun F, Wang J, Ma C, Zhang Y, Tang L, Ding H, Lu S. Isocyanate Additives Improve the Low-Temperature Performance of LiNi 0.8Mn 0.1Co 0.1O 2||SiOx@Graphite Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20966-20976. [PMID: 37079627 DOI: 10.1021/acsami.3c00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
LiNi0.8Mn0.1Co0.1O2||SiOx@graphite (NCM811||SiOx@G)-based lithium-ion batteries (LIBs) exhibit high energy density and have found wide applications in various fields, including electric vehicles. Nonetheless, its low-temperature performance remains a challenge. One of the most efficacious strategies to enhance the low-temperature functionality of battery is the development of appropriate electrolytes with low-temperature suitability. Herein, p-tolyl isocyanate (PTI) and 4-fluorophenyl isocyanate (4-FI) are used as additive substances to integrate into the electrolytes to improve the low-temperature performance of the battery. Theoretical calculations and experimental results indicate that PTI and 4-FI can both preferentially generate a stable SEI on the electrode surface, which is beneficial to reduce the interfacial impedance. As a result, the additive, i.e. 4-FI, is superior to PTI in improving the low-temperature performance of the battery due to the optimization of F in the SEI membrane components. At room temperature, the cyclic stability of the NCM811/SiOx@G pouch cell increases from 92.5% (without additive) to 94.2% (with 1% 4-FI) after 200 cycles at 0.5 C. Under the operating temperature of -20 °C, the cyclic stability of the NCM811/SiOx@G pouch cell increases from 83.2% (without additive) to 88.6% (with 1% 4-FI) after 100 cycles at 0.33 C. Therefore, a rational interphase design involving the modification of the additive structure is a cost-effective way to improve the performance of LIBs.
Collapse
Affiliation(s)
- Fujuan Han
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Zenghua Chang
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Rennian Wang
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Fengling Yun
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Jing Wang
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Chenxi Ma
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Yi Zhang
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Ling Tang
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Haiyang Ding
- National Power Battery Innovation Center, Beijing 100088, China
- China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Shigang Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Wu Y, Wang T, Gao J, Zhang L, Fay JDB, Hirth S, Hankett J, Chen Z. Molecular Behavior of 1K Polyurethane Adhesive at Buried Interfaces: Plasma Treatment, Annealing, and Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3273-3285. [PMID: 36808974 DOI: 10.1021/acs.langmuir.2c03084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-part (1K) polyurethane (PU) adhesive has excellent bulk strength and environmental resistance. It is therefore widely used in many fields, such as construction, transportation, and flexible lamination. However, when contacting non-polar polymer materials, the poor adhesion of 1K PU adhesive may not be able to support its outdoor applications. To solve this problem, plasma treatment of the non-polar polymer surface has been utilized to improve adhesion between the polymer and 1K PU adhesive. The detailed mechanisms of adhesion enhancement of the 1K PU adhesive caused by plasma treatment on polymer substrates have not been studied extensively because adhesion is a property of buried interfaces which are difficult to probe. In this study, sum frequency generation (SFG) vibrational spectroscopy was used to investigate the buried PU/polypropylene (PP) interfaces in situ nondestructively. Fourier-transform infrared spectroscopy, the X-ray diffraction technique, and adhesion tests were used as supplemental methods to SFG in the study. The 1K PU adhesive is a moisture-curing adhesive and usually needs several days to be fully cured. Here, time-dependent SFG experiments were conducted to monitor the molecular behaviors at the buried 1K PU adhesive/PP interfaces during the curing process. It was found that the PU adhesives underwent rearrangement during the curing process with functional groups gradually becoming ordered at the interface. Stronger adhesion between the plasma-treated PP substrate and the 1K PU adhesive was observed, which was achieved by the interfacial chemical reactions and a more rigid interface. Annealing the samples increased the reaction speed and enhanced the bulk PU strength with higher crystallinity. In this research, molecular mechanisms of adhesion enhancement of the 1K PU adhesive caused by the plasma treatment on PP and by annealing the PU/PP samples were elucidated.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianle Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Zhang
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Jonathan D B Fay
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sabine Hirth
- BASF SE, RAA/OS-B007, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Li B, Ma Y, Han X, Hu P, Lu X. Enhanced Sum Frequency Generation for Monolayers on Au Relative to Silica: Local Field Factors and SPR Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:659-667. [PMID: 36580605 DOI: 10.1021/acs.langmuir.2c03016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using metals as signal magnified substrates, surface plasmon-enhanced sum frequency generation (SFG) vibrational spectroscopy is a promising technique to probe weak molecular-level signals at surfaces and interfaces. In this study, the vibrational signals of the n-alkane monolayer on the gold (Au) and silica substrates are investigated using the broadband femtosecond SFG. The enhancement factors are discovered to be up to ∼1076 and ∼31 for the methyl symmetric and asymmetric stretching (ss and as) modes of the monolayer, respectively. By systematically analyzing the second-order nonlinear susceptibility tensor components (χijks), the Fresnel coefficients (Fijks), and the surface plasmon resonance (SPR) effect, we find that the interplay between Fijk and χijk terms and the SPR effect dominate the SFG signal enhancement. Our study reveals that the relative contributions of different influencing factors (i.e., Fresnel coefficients and SPR) to the SFG signal enhancement provide an approach to interpreting enhanced SFG vibrational signals detected from probe molecules on distinct substrates and may finally guide the design of the experimental methodology to improve the detection sensitivity and signal-to-noise ratio.
Collapse
Affiliation(s)
- Bolin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yonghao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical College, Xuzhou, Jiangsu221004, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
9
|
Xu Z, Zhang Y, Wu Y, Lu X. Spectroscopically Detecting Molecular-Level Bonding Formation between an Epoxy Formula and Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13261-13271. [PMID: 36254887 DOI: 10.1021/acs.langmuir.2c02325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The formation of the interfacial adhesion between an epoxy adhesive and a substrate was normally accompanied by the epoxy curing process on the substrate. Although the debate on the formation mechanism of the interfacial adhesion is still ongoing, this issue can causally be resolved by studying the interfacial structural formation between the epoxy adhesive and the substrate. Herein, to reveal the interfacial structural formation of a representative formula composed of epoxy (digylcidyl ether of biphenyl A, DGEBA) and amine hardener (2,2'-(ethylenedioxy) diethylamine, EDDA) with the steel substrate upon curing and postcuring treatments, sum-frequency generation (SFG) vibrational spectroscopy with a sandwiched transparent window/epoxy adhesive/steel setup was applied to detect and track the buried molecular-level structures at the epoxy adhesive/steel interface. An X-ray photoelectron spectroscopic (XPS) experiment was performed to probe the intentionally exposed interface to disclose the occurring interfacial chemical reaction. The reaction between the epoxy groups and the steel-surface OH groups and the molecular reconstruction of interfacial epoxy methyl groups upon curing and postcuring steps were confirmed. The latter also indirectly indicated the formation of the additional hydrogen bonding and the former bonding reaction at the interface. The above two spectroscopic experimental results matched up with the further examination of the adhesion strength. Therefore, this work elucidates the formation of the interfacial bonding between the epoxy formula and the steel substrate upon curing and postcuring treatments at the molecular level, thus providing an in-depth insight into the origin of the interfacial adhesion.
Collapse
Affiliation(s)
- Zhaohui Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
10
|
Gong D, Han Y, Zhang Q, Xu B, Zhang C, Li K, Tan L. Development of Leather Fiber/Polyurethane Composite with Antibacterial, Wet Management, and Temperature-Adaptive Flexibility for Foot Care. ACS Biomater Sci Eng 2022; 8:4557-4565. [DOI: 10.1021/acsbiomaterials.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dakai Gong
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yanting Han
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bo Xu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Andre JS, Grant J, Greyson E, Chen X, Tucker C, Drumright R, Mohler C, Chen Z. Molecular Interactions between Amino Silane Adhesion Promoter and Acrylic Polymer Adhesive at Buried Silica Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6180-6190. [PMID: 35512318 DOI: 10.1021/acs.langmuir.2c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the influence of an amino silane (3-(2-aminoethylamino)-propyldimethoxymethylsilane, AEAPS) on the interfacial structure and adhesion of butyl acrylate/methyl methacrylate copolymers (BAMMAs) to silica was investigated by sum frequency generation vibrational spectroscopy (SFG). Small amounts of methacrylic acid, MAA, were included in the BAMMA polymerizations to assess the impact of carboxylic acid functionality on the glass interface. SFG was used to probe the O-H and C═O groups of incorporated MAA, ester C═O groups of BAMMA, and CH groups from all species at the silica interfaces. The addition of AEAPS resulted in a significant change in the molecular structure of the polymer at the buried interface with silica due to specific interactions between the BAMMA polymers and silane. SFG results were consistent with the formation of ionic bonds between the primary and secondary amines of the AEAPS tail group and the MAA component of the polymer, as evidenced by the loss of the MAA O-H and C═O signals at the interface. It is extensively reported in the literature that methoxy head groups of an amino silane chemically bind to the silanols of glass, leaving the amine groups available to react with various chemical functionalities. Our results are consistent with this scenario and support an adhesion promotion mechanism of amino silane with various aspects: (1) the ionic bond formation between the tail amine group and acid functionality on BAMMA, (2) the chemical coupling between the silane head group and glass, (3) migration of more ester C═O groups to the interface with order, and (4) disordering or reduced levels of CH groups at the interface. These results are important for better understanding of the mechanisms and effect of amino silanes on the adhesion between acrylate polymers and glass substrates in a variety of applications.
Collapse
Affiliation(s)
- John S Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph Grant
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Eric Greyson
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Xiaoyun Chen
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Christopher Tucker
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Ray Drumright
- Dow Coating Materials, Midland, Michigan 48674, United States
| | - Carol Mohler
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Xu Z, Zhang Y, Wu Y, Lu X. Molecular-Level Correlation between Spectral Evidence and Interfacial Bonding Formation for Epoxy Adhesives on Solid Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5847-5856. [PMID: 35441517 DOI: 10.1021/acs.langmuir.2c00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacial bonding strength of an epoxy-based adhesive depends on the interfacial interaction between the adhesive and the substrate. Normally, the curing process at the interface accompanied by the interfacial bonding formation is different from that in the bulk, and it is still a big challenge to probe the interfacial bonding formation at a molecular level. In this study, to trace the interfacial structural evolution of a representative formula of epoxy (digylcidyl ether of biphenyl A, DGEBA) and amine hardener [1,2-bis(2-aminoethoxy)ethane, EDDA] with the sapphire and silica substrates upon curing and post-curing steps, sum frequency generation (SFG) vibrational spectroscopy is employed to detect the molecular-level interfacial structural information. For the sapphire substrate, upon curing, backbone methylene (CH2) stretching signals decrease, indicating the formation of a rigid chain network structure and thus losing the local methylene order, while vibrational signals of the sapphire surface hydroxyl (OH) groups (including hydrogen-bonded and unbonded) increase significantly, indicating the formation of a strong hydrogen-bonding and polar interaction between the epoxy adhesive and the sapphire surface. Upon post-curing, increased backbone CH2 signals and decreased sapphire OH signals suggest interfacial chemical bonding formation due to the reaction between the epoxy rings and the sapphire surface OH groups. Orientation analysis confirms the enhanced ordering of the sapphire surface OH groups upon curing and post-curing, in comparison to the uncured epoxy formula. As for the fused silica, weak vibrational signals of the methylene (CH2) and methyl (CH3) groups are observed before curing, while both of them increase slightly for the cured and post-cured epoxy formulae, suggesting relatively less hydrophilic nature of the silica surface compared to that of the sapphire surface, also evidenced by the very weak OH signals upon curing and post-curing. Further measurement on the adhesion strength matches up with the above spectroscopic experimental results, substantiating the correlation between the macroscopic bonding strength of the epoxy adhesive and the microscopic molecular-level structure.
Collapse
Affiliation(s)
- Zhaohui Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
13
|
Lin T, Wu Y, Santos E, Chen X, Kelleher-Ferguson J, Tucker C, Ahn D, Mohler C, Chen Z. Probing Covalent Interactions at a Silicone Adhesive/Nylon Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2590-2600. [PMID: 35166546 DOI: 10.1021/acs.langmuir.1c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent bonding is one of the most robust forms of intramolecular interaction between adhesives and substrates. In contrast to most noncovalent interactions, covalent bonds can significantly enhance both the interfacial strength and durability. To utilize the advantages of covalent bonding, specific chemical reactions are designed to occur at interfaces. However, interfacial reactions are difficult to probe in situ, particularly at the buried interfaces found in well-bonded adhesive joints. In this work, sum frequency generational (SFG) vibrational spectroscopy was used to directly examine and analyze the interfacial chemical reactions and related molecular changes at buried nylon/silicone elastomer interfaces. For self-priming elastomeric silicone adhesives, silane coupling agents have been extensively used as adhesion promoters. Here with SFG, the interfacial chemical reactions between nylon and two alkoxysilane adhesion promoters with varied functionalities (maleic anhydride (MAH) and epoxy) formulated into the silicone were observed and investigated. Evidence of reactions between the organofunctional group of each silane and reactive groups on the polyamide was found at the buried interface between the cured silicone elastomer and nylon. The adhesion strength at the nylon/cured silicone interfaces was substantially enhanced with both silane additives. SFG results elucidated the mechanisms of organo-silane adhesion promotion for silicone at the molecular level. The ability to probe and analyze detailed interfacial reactions at buried nylon/silicone interfaces demonstrated that SFG is a powerful analytical technique to aid the design and optimization of materials with desired interfacial properties.
Collapse
Affiliation(s)
| | | | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - Chris Tucker
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | |
Collapse
|
14
|
Zhang S, Hsu L, Toolis A, Li B, Zhou J, Lin T, Chen Z. Investigation of the Atmospheric Moisture Effect on the Molecular Behavior of an Isocyanate-Based Primer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12705-12713. [PMID: 34668715 DOI: 10.1021/acs.langmuir.1c02135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A primer coating is engineered to facilitate compatibility between products like adhesives, sealants, and potting compounds and targeted substrates. Prolonged exposure of isocyanate-based primer surfaces to the environment is known to negatively affect the interfacial adhesion between itself and the products subsequently applied on top of it. However, the molecular behavior behind this observed phenomenon remained to be further investigated. In this study, sum frequency generation (SFG) vibrational spectroscopy, a nonlinear optical spectroscopic technique, was applied to study the surface of an isocyanate-based primer exposed to different environments at the molecular level. Atmospheric moisture was considered to be a potential factor in impairing the adhesion performance of the primer, and thus, time- and humidity-dependent experiments were executed to monitor the molecular behavior at the primer surface using SFG. In addition, 180° peel testing experiments were conducted to measure the adhesion properties of primers after being exposed to the corresponding conditions to correlate to SFG results and establish a chemical structure-macroscopic performance relationship. This study on the changes at the primer surface in different environments with varied humidity levels as a function of time aims to provide an in-depth understanding of the moisture effect on isocyanate-based primers. These learnings may also be helpful toward exploring a broader range of coatings and surface layers and improving customer product use guidelines.
Collapse
Affiliation(s)
| | - Lorraine Hsu
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Amy Toolis
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Matsumoto T, Shimizu Y, Nishino T. Analyses of the Adhesion Interphase of Isotactic Polypropylene Using Hot-Melt Polyolefin Adhesives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Yosuke Shimizu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| |
Collapse
|
18
|
Guo R, Li B, Lu T, Lin T, Andre J, Zhang C, Zhi L, Chen Z. Molecular Orientations at Buried Conducting Polymer/Graphene Interfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruiying Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bolin Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ting Lin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chengcheng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|