1
|
Tan C, Si G, Zou C, Chen C. Functional Polyolefins and Composites. Angew Chem Int Ed Engl 2025; 64:e202424529. [PMID: 39821929 DOI: 10.1002/anie.202424529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Polyolefins are simple hydrocarbons that require additional chemical modifications or functional additives to give them custom functions. Recent research in the development of functional polyolefins has surpassed the traditional approach of simply improving surface properties by incorporating polar moieties. Creating custom functionalized polyolefins by using specific functional units has attracted increasing attention. This review summarizes advances in preparing custom functionalized polyolefin materials using functional units such as comonomers, chain-transfer agents, post-polymerization modification reagents, and functional fillers. Exploring new functional units and innovative synthetic strategies will further enhance the performance and expand the applications of functional polyolefins.
Collapse
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui, 230601, China
| | - Guifu Si
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| | - Chen Zou
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| | - Changle Chen
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| |
Collapse
|
2
|
Lv X, Li Z, Zhang Z, Wang H, Song H, Yuan S, Fu X, Li Z. Quaternary Ammonium Salt-Based Intrinsic Antibacterial Polyurethanes: Optimizing the Antibacterial Activity via Cationic Main- or Side-Chain Design in Hard Segments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56862-56873. [PMID: 39397780 DOI: 10.1021/acsami.4c13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Thermoplastic polyurethanes (TPUs) are one of the most appealing materials with extensive applications in biomedical fields due to their versatile mechanical properties and excellent biocompatibility. In response to the escalating challenges of bacterial infections, it is desirable to obtain TPUs with intrinsic antibacterial activity, particularly for application in biomedical devices and public places. Herein, a cationic main-/side-chain structure regulation strategy in the TPU hard segment was adopted to introduce and optimize the antibacterial activity. This was achieved by synthesizing two types of quaternary ammonium salts (QAS)-containing chain extenders, i.e., N-methyl-N-alkyl-N,N-bis(2-hydroxyethyl) ammonium bromide (Mn, where n represents the N-alkyl chain length) and N,N-dimethyl-N-alkyl-N-2,3-propylene glycol (Dn), from N-methyldiethanolamine (MDEA) and 3-dimethylamino-1,2-propanediol (DMAD), respectively. Given the structural differences between Mn and Dn, main-chain-type PU-Mn and side-chain-type PU-Dn were subsequently obtained with QAS groups in the hard segment. The N-alkyl chain length, QAS content, and main-/side-chain types were systematically investigated to optimize bactericidal properties. The results revealed that a long N-alkyl chain (from C6 to C14) increased the antibacterial activity of the chain extenders and corresponding TPU films. Besides, side-chain-type PU-Dn films showed higher contact-active antibacterial activity than that exerted by the main-chain-type PU-Mn films. Remarkably, almost 100% of Staphylococcus aureus(S. aureus) could be killed by the PU-D14 film with a low QAS content (1.6 wt %). All the TPUs showed good thermal stability with a degradation temperature of 5% mass loss (Td,5%) above 300 °C. Moreover, the TPU films displayed excellent mechanical properties with the tensile strength at break varying from 20.7 to 47.5 MPa and ultimate elongation above 1000%. All of the intrinsic antibacterial films showed negligible hemolytic activities.
Collapse
Affiliation(s)
- Xingshuang Lv
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhi Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhenhao Zhang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hao Wang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongwei Song
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaohui Fu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
3
|
Pal A, Wong AR, Lamb JR. Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis Polymerization. ACS Macro Lett 2024; 13:502-507. [PMID: 38625148 DOI: 10.1021/acsmacrolett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The development of robust methods for the synthesis of chemically recyclable polymers with tunable properties is necessary for the design of next-generation materials. Polyoxazolidinones (POxa), polymers with five-membered urethanes in their backbones, are an attractive target because they are strongly polar and have high thermal stability, but existing step-growth syntheses limit molar masses and methods to chemically recycle POxa to monomer are rare. Herein, we report the synthesis of high molar mass POxa via ring-opening metathesis polymerization of oxazolidinone-fused cyclooctenes. These novel polymers show <5% mass loss up to 382-411 °C and have tunable glass transition temperatures (14-48 °C) controlled by the side chain structure. We demonstrate facile chemical recycling to monomer and repolymerization despite moderately high monomer ring-strain energies, which we hypothesize are facilitated by the conformational restriction introduced by the fused oxazolidinone ring. This method represents the first chain growth synthesis of POxa and provides a versatile platform for the study and application of this emerging subclass of polyurethanes.
Collapse
Affiliation(s)
- Arpan Pal
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Allison R Wong
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Qu W, Bi Z, Zou C, Chen C. Light, Heat, and Force-Responsive Polyolefins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307568. [PMID: 38183385 PMCID: PMC10953547 DOI: 10.1002/advs.202307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Indexed: 01/08/2024]
Abstract
Stimuli-responsive polymers have found applications as shape-memory materials, optical switches, and sensors, but the installation of these responsive properties in non-polar and inert polyolefins is challenging. In this contribution, a series of spiropyran (SP)-based comonomers are synthesized and copolymerized with ethylene or ethylene/cyclic monomers. In addition to great mechanical and surface properties, these functionalized polyolefins responded to light, heat, and force, which induced changes in the polymer structure to transmit color or mechanical signals. These interesting responsive properties are also installed in a series of commercial polyolefin materials through reactive extrusion, making the scalable production of these materials possible.
Collapse
Affiliation(s)
- Weicheng Qu
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhengxing Bi
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
5
|
Li K, Cui L, Zhang Y, Jian Z. Amide-Functionalized Polyolefins and Facile Post-Transformations. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
A Multifunctional Biomass Zinc Catalyst for Epoxy-Based Vitrimers and Composites. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
7
|
Wu R, Niu Z, Huang L, Xia Z, Feng Z, Qi Y, Dai Q, Cui L, He J, Bai C. Vanadium complexes bearing the bulky bis(imino)pyridine ligands: Good thermal stability toward ethylene polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
9
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
10
|
Zhang H, Zhang Z, Cai Z, Li M, Liu Z. Influence of Silica-Supported Alkylaluminum on Heterogeneous Zwitterionic Anilinonaphthoquinone Nickel and Palladium-Catalyzed Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhaoyu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
11
|
Tan C, Zou C, Chen C. Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene–Polar Monomer Copolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Zhang Y, Wang T, Bai J, You W. Repurposing Mitsunobu Reactions as a Generic Approach toward Polyethylene Derivatives. ACS Macro Lett 2022; 11:33-38. [PMID: 35574803 DOI: 10.1021/acsmacrolett.1c00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Broad scope of functionality and controllable degree of functionalization are intriguing goals for the development of polar-group-functionalized polyethylene materials. Herein, we propose a generic strategy of using widely available starting materials (i.e., poly(ethylene-co-vinyl acetate), EVA) and mild Mitsunobu functionalization conditions to prepare over 30 polyethylene derivatives. No noble transition metal catalysts (e.g., Ru, Mo, Pd, etc.) or corrosive/explosive reagents (e.g., HBr, NaN3, C2H4, H2, etc.) are used in the synthesis, while functional groups such as azide, aldehyde, norbornene, and thiol can be easily installed, with tunable content as high as 18 mol %. Using this practical method, we successfully prepared polyethylene-derivatized membranes with excellent antimicrobial and fluorescent properties.
Collapse
Affiliation(s)
- Yin Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ting Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jing Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei You
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
13
|
Ma Z, Ji M, Pang W, Si G, Chen M. The synthesis and properties research of functionalized polyolefins. NEW J CHEM 2022. [DOI: 10.1039/d2nj04335a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work demonstrated a tandem ROMP/hydrogenation approach for the preparation of functionalized polyolefins and their properties were investigated.
Collapse
Affiliation(s)
- Zhanshan Ma
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Minghang Ji
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guifu Si
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Min Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Chen S, Zhu L, Zhang Z. Catalyst-free aziridine-based step-growth polymerization: a facile approach to optically active poly(sulfonamide amine)s and poly(sulfonamide dithiocarbamate)s. Polym Chem 2022. [DOI: 10.1039/d2py00771a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Step-growth polymerization of chiral bis(N-sulfonyl aziridine)s with diamines or bis(dialkyldithiocarbamate) in the absence of a catalyst allows the facile synthesis of optically active polysulfonamide derivatives.
Collapse
Affiliation(s)
- Shibin Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
15
|
Wang XL, Zhang YP, Pan L, Wang F, Luo SY, Li Y. Reactivity of Phosphino‐naphtholate Nickel Complexes and Their Catalysis of Copolymerization with Polar Monomers. ChemCatChem 2021. [DOI: 10.1002/cctc.202101736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xu-ling Wang
- Tianjin University Polymer Materials 300350 Tianjin CHINA
| | - Yan-Ping Zhang
- Shanghai Institute of Organic Chemistry Polymer Materials 200032 Shanghai CHINA
| | - Li Pan
- Tianjin University Polymer Materials 300350 Tianjin CHINA
| | - Fei Wang
- Tianjin University Polymer Materials 300350 Tianjin CHINA
| | - Shui-yuan Luo
- Quanzhou Normal University College of Chemical Engineering & Materials Science 362000 Quanzhou CHINA
| | - Yuesheng Li
- Tianjin University Polymer Materials Beiyang Campus 300350 Tianjin CHINA
| |
Collapse
|
16
|
Li Y, Li T, Li W, Lou Y, Liu L, Ma Z. The II-I Phase Transition Behavior of Butene-1 Copolymers with Hydroxyl Groups. Polymers (Basel) 2021; 13:polym13081315. [PMID: 33923827 PMCID: PMC8074023 DOI: 10.3390/polym13081315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
The crystallization and II–I phase transition of functionalized polybutene-1 with hydroxyl groups were investigated by differential scanning calorimetry. The results show that the incorporated hydroxyl groups increase the nucleation density but decrease the growth rate in melt crystallization. Interestingly, for the generated tetragonal form II, the presence of polar hydroxyl groups can effectively accelerate the phase transition into the thermodynamically stable modification of trigonal form I, especially with stepwise annealing and high incorporation. Using stepwise annealing, II–I phase transition was enhanced by an additional nucleation step performed at a relatively low temperature, and the optimal nucleation temperature to obtain the maximum transition degree was ‒10 °C, which is independent from the content of hydroxyl groups. Furthermore, the accelerating effect of hydroxyl groups on the II–I transition kinetics can be increased by reducing the crystallization temperature when preparing form II crystallites. These results provide a potential molecular design approach for developing polybutene-1 materials.
Collapse
Affiliation(s)
- Yuanyuan Li
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Tao Li
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Wei Li
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Yahui Lou
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Liyuan Liu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (L.L.); (Z.M.)
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
- Correspondence: (L.L.); (Z.M.)
| |
Collapse
|