1
|
Navya PV, Ganesan K, Neyts EC, Sampath S. Heterocycle- and Amine-Free Electrochromic and Electrofluorochromic Molecules for Energy-Saving See-Through Smart Windows and Displays. Chemistry 2024; 30:e202401647. [PMID: 38747442 DOI: 10.1002/chem.202401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Electrochromic (EC) smart windows are an elegant alternative to dusty curtains, blinds, and traditional dimming devices. The EC energy storage smart windows and displays received remarkable attention in the optoelectronic industry as they hold promise for high energy efficiency, low power consumption, reversibility, and swift response to stimuli. However, achieving these properties remains challenging. Moreover, most EC molecules do not exhibit electrofluorochromism, which is highly essential for smart displays because its EC property can modulate the solar heat entering the building, and its electrofluorochromic (EFC) aspects can create lighting during the night. In this work, a structure-property relationship is utilized to develop new electrochromes that can store the injected charge, and these molecules indeed exhibit electrofluorochromism. The compounds are synthesized from tetrabenzofluorene with two aromatic acceptor units, and avoids the use of widely studied heterocycles and amine derivatives. The electrochromes switches from yellow to dark hue in solution, solid, and gel state. The compounds display exceptional electrochemical stability and reversibility in 1000 cycles and capacity retention of 93-100 % in 300 charging-discharging cycles. The proof-of-concept device fabrication of the self-dimming EC smart window presented here demonstrates that it can furnish visual comfort, modulate transmitted light and glare, and reduce energy usage.
Collapse
Affiliation(s)
- Panichiyil V Navya
- Soft Functional Hybrid Materials Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Krithika Ganesan
- MOSAIC Research Group, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Erik C Neyts
- MOSAIC Research Group, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Srinivasan Sampath
- Soft Functional Hybrid Materials Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| |
Collapse
|
2
|
Kumar V, Bharathkumar HJ, Dongre SD, Gonnade R, Krishnamoorthy K, Babu SS. Isomer Effect on Energy Storage of π-Extended S-Shaped Double[6]Heterohelicene. Angew Chem Int Ed Engl 2023; 62:e202311657. [PMID: 37782466 DOI: 10.1002/anie.202311657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
Recently, chiral and nonplanar cutouts of graphene have been the favorites due to their unique optical, electronic, and redox properties and high solubility compared with their planar counterparts. Despite the remarkable progress in helicenes, π-extended heterohelicenes have not been widely explored. As an anode in a lithium-ion battery, the racemic mixture of π-extended double heterohelical nanographene containing thienothiophene core exhibited a high lithium storage capability, attaining a specific capacity of 424 mAh g-1 at 0.1 A g-1 with excellent rate capability and superior long-term cycling performance over 6000 cycles with negligible fade. As a first report, the π-extended helicene isomer (PP and MM), with the more interlayer distance that helps faster diffusion of ions, has exhibited a high capacity of 300 mAh g-1 at 2 A g-1 with long-term cycling performance over 1500 cycles compared to the less performing MP and PM isomer and racemic mixture (150 mAh g-1 at 2 A g-1 ). As supported by single-crystal X-ray analysis, a unique molecular design of nanographenes with a fixed (helical) molecular geometry, avoiding restacking of the layers, renders better performance as an anode in lithium-ion batteries. Interestingly, the recycled nanographene anode material displayed comparable performance.
Collapse
Affiliation(s)
- Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - H J Bharathkumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Polymer Science and Engineering Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kothandam Krishnamoorthy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Polymer Science and Engineering Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
3
|
Aloufi F, Halawani RF, Jamoussi B, Hajri AK, Zahi N. Quantum Modification of Indacenodithieno[3,2- b]thiophene-Based Non-fullerene Acceptor Molecules for Organic Solar Cells of High Efficiency. ACS OMEGA 2023; 8:21425-21437. [PMID: 37360427 PMCID: PMC10286251 DOI: 10.1021/acsomega.2c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
In order to enhance the efficacy of organic solar cells, six new three-dimensional small donor molecules (IT-SM1 to IT-SM6) have been computationally designed by modifying the peripheral acceptors of the reference molecule (IT-SMR). The frontier molecular orbitals revealed that IT-SM2 to IT-SM5 had a smaller band gap (Egap) than IT-SMR. They also had smaller excitation energies (Ex) and exhibited a bathochromic shift in their absorption maxima (λmax) when compared to IT-SMR. In both the gas and chloroform phases, IT-SM2 had the largest dipole moment. IT-SM2 also had the best electron mobility, while IT-SM6 had the best hole mobility owing to their smallest reorganization energy for electron (0.1127 eV) and hole (0.0907 eV) mobility, respectively. The analyzed donor molecules' open-circuit voltage (VOC) indicated that all of these proposed molecules had greater VOC and fill factor (FF) values than the IT-SMR molecule. In accordance with the evidence of this work, the altered molecules can seem to be quite proficient for usage by experimentalists and have prospective use in future in the manufacture of organic solar cells with improved photovoltaic properties.
Collapse
Affiliation(s)
- Fahed
A. Aloufi
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riyadh F. Halawani
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Science, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nesrine Zahi
- Applied
College, Huraymila, Imam Mohammad Ibn Saud
Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
- Thermal
and Energetic Systems Studies Laboratory (LESTE), National Engineering
School of Monastir (ENIM), University of
Monastir, Monastir 5000, Tunisia
| |
Collapse
|
4
|
Ming S, Zhang Y, Lin K, Zhao J, Zhang Y. Large-fused-ring-based D-A type electrochromic polymer with magenta/yellowish green/cyan three-color transitions. Phys Chem Chem Phys 2023; 25:1970-1976. [PMID: 36541439 DOI: 10.1039/d2cp04987b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Large-fused-ring-based conjugated polymers possess wide application prospects in optoelectronic devices due to their high charge transport and wide optical absorption. In this paper, three low-bandgap donor-acceptor (D-A) type polymers PBIT-X (X = 1, 2, 3) based on alkylated benzodithiophene and tris(thienothiophene) as donors and thiadiazol-quinoxaline as an acceptor were synthesized via Stille coupling polymerization at different (donor/acceptor) D/A molar feed ratios. The band gaps of PBIT-1, PBIT-2, PBIT-3 were 1.10 eV, 1.04 eV and 1.02 eV, respectively. Spectroelectrochemistry studies showed that the three D-A type polymers have dual bands located in visible and near-infrared regions in the neutral state. The three D-A type polymers possess good electrochromic properties, such as an optical contrast of 56% and response time of 0.3 s. In particular, PBIT-3 could achieve three color changes from magenta to yellowish green to cyan during the oxidation process. The results indicate that these D-A type conjugated polymers based on large fused-ring units exhibit multiple color changes, endowing them with huge potential applications in visible and near-infrared electrochromic devices.
Collapse
Affiliation(s)
- Shouli Ming
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yuling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Kaiwen Lin
- Department of Materials and Food, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, P. R. China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| |
Collapse
|
5
|
Wu L, Guo Y, Kuang G, Wang Y, Liu H, Kang Y, Ma T, Tao Y, Huang K, Zhang S. Synthesis and electrochromic properties of all donor polymers containing fused thienothiophene derivatives with high contrast and color efficiency. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Fu W, Chen H, Yi X, Zhang R, Liu J. Electrochemical polymerization of D-A-D type monomers consisting of triphenylamine and benzo[1,2-b:4,5-b′]dipyrazine units for multicolor electrochromism. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Chen H, Wang W, Zhu J, Han Y, Liu J. Electropolymerization of D-A type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Guo Q, Zhang J, Li X, Gong H, Wu S, Li J. Physical and Electrochemical Properties of Soluble 3,4-Ethylenedioxythiophene (EDOT)-Based Copolymers Synthesized via Direct (Hetero)Arylation Polymerization. Front Chem 2021; 9:753840. [PMID: 34778210 PMCID: PMC8586465 DOI: 10.3389/fchem.2021.753840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
Over the past decades, π-conjugated polymers (CPs) have drawn more and more attention and been essential materials for applications in various organic electronic devices. Thereinto, conjugated polymers based on the 3,4-ethylenedioxythiophene (EDOT) backbone are among the high-performance materials. In order to investigate the structure-property relationships of EDOT-based polymers and further improve their electrochemical properties, a series of organic solvent-soluble EDOT-based alternative copolymers consisting of electron-rich fragments (fluorene P1, carbazole P2, and 3,4-alkoxythiophene P3) or electron-deficient moieties (benzotriazole P4 and thieno[3,4-c]pyrrole-4,6-dione P5) were synthesized via direct C-H (hetero)arylation polymerization (DHAP) in moderate to excellent yields (60-98%) with medium to high molecular weights (M n = 3,100-94,000 Da). Owing to their various electronic and structural properties, different absorption spectra (λ max = 476, 380, 558, 563, and 603 nm) as well as different specific capacitances of 70, 68, 75, 51, and 25 F/g with 19, 10, 21, 26, and 69% of capacity retention after 1,000 cycles were observed for P1-P5, respectively. After careful study through multiple experimental measurements and theoretical calculation, appropriate electronic characteristics, small molecular conformation differences between different oxidative states, and well-ordered molecular stacking could improve the electrochemical performance of CPs.
Collapse
Affiliation(s)
- Qiang Guo
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Jincheng Zhang
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Xiaoyu Li
- Southwest University of Science and Technology, Mianyang, China
| | - Heqi Gong
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Shuanghong Wu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| |
Collapse
|
9
|
Chang P, Mei H, Zhang M, Zhao Y, Wang X, Cheng L, Zhang L. 3D Printed Electrochromic Supercapacitors with Ultrahigh Mechanical Strength and Energy Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102639. [PMID: 34510732 DOI: 10.1002/smll.202102639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
With the accelerating update of advanced electronic gadgets, a great deal of attention is being paid today to the function integration and intelligent design of electronic devices. Herein, a novel kind of multitasking 3D oxygen-deficient WO3- x ∙ 2H2 O/Ag/ceramic microscaffolds, possessing simultaneous giant energy density, ultrahigh mechanical strength, and reversible electrochromic performance is proposed, and fabricated by a 3D printing technique. The ceramic microscaffolds ensure outstanding mechanical strength and stability, the topology optimized porous lattice structure provides developed surface area for coloration as well as abundant easily accessible channels for rapid ion transportation, and the bifunctional oxygen-defective pseudomaterials enable the large areal capacity and impressive electrochromic performance. As a result, this 3D-printed multitasking microscaffolds simultaneously perform structure-designable, electrochromic, compression resistant, and energy storage functions, behaving with true 3D structure with tailorable curvatures, excellent compressive strength (61.9 MPa), large color variations (>145% in b* value), good aesthetic visual quality as well as exciting electrochemical performances for energy storage including ultrahigh areal capacitance (10.05 F cm-2 at 5 mA cm-2 ), record-high energy density (0.60 mWh cm-2 ), and superior long-term cycling stability (88.6% capacity retention after 10 000 cycles). This work opens up the possibility for high-performance multi-functional coupling structural materials and integrated systems.
Collapse
Affiliation(s)
- Peng Chang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Mei
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Minggang Zhang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yu Zhao
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao Wang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Litong Zhang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
10
|
Zhang L, Zhan W, Dong Y, Yang T, Zhang C, Ouyang M, Li W. Liquid/Liquid Interfacial Suzuki Polymerization Prepared Novel Triphenylamine-Based Conjugated Polymer Films with Excellent Electrochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20810-20820. [PMID: 33886266 DOI: 10.1021/acsami.1c02745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preparing conjugated polymer films via interfacial Suzuki polymerization is a promising method for obtaining desirable electrochromic materials with desired structures. Here, a series of aryl boronic esters and triphenylamine-based aryl bromides were applied as precursors, and several polymer films were finally obtained via the liquid/liquid interfacial Suzuki polymerization reaction under mild conditions. FT-IR, UV, and Raman as well as electrochemistry, SEM, and EDS results all provide strong evidence for the formation of the desired polymer structures. Among them, the TPA-Wu (containing triphenylamine and alkyl-fluorene) film exhibits the best film-forming quality. Besides, these polymer films were applied in electrochromic applications. The results show that electrochromic properties can be affected by the quality of film formation. It is worth mentioning that the TPA-Wu film could achieve excellent electrochromic properties with reversible multicolor changes from transparent yellow to orange-red to blue-green under varying potentials. Compared to other triphenylamine-based electrochromic materials, the TPA-Wu film possessed the most desirable coloring efficiency, higher optical contrast, and shorter switching time. This work provides an existing general approach of liquid/liquid interfacial Suzuki polymerization for constructing conjugated polymer films toward electrochromic applications.
Collapse
Affiliation(s)
- Ling Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wang Zhan
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yujie Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Tao Yang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Mi Ouyang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
11
|
Li M, Tao C, Zhu G, Zhang H, Lin B, Zhang X, Yang H, Guo L, Sun Y. 1,3,6,8-Pyrenetetrasulfonic acid anchored doping to prepare solution-processable polyaniline for electrochromic supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01178b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy to improve the ion transmission and stability of ESCs by introducing an anchored dopant during the polymerization of PANI has been proposed.
Collapse
Affiliation(s)
- Man Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Chongxin Tao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Guanqun Zhu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Huijun Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Baoping Lin
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Xueqin Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Hong Yang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Lingxiang Guo
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Ying Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|