1
|
Yu J, Yu H, Niu J, Lei Z, Liu Y. Tunable Nano-Supramolecules Based on Cucurbiturils for Near-Infrared Phosphorescence Imaging. NANO LETTERS 2024; 24:16124-16131. [PMID: 39636037 DOI: 10.1021/acs.nanolett.4c04920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nano-supramolecules based on artificial macrocycles can not only regulate assembly morphology but also boost phosphorescence resonance energy transfer (PRET). Herein, a water-soluble phosphorescence supramolecule was constructed from the hyaluronic acid-modified bromophenylpyridinium (HAPY), cucurbit[n]uril (CB[n], n = 7/8), and energy acceptor phenyl-bridged phenothiazine derivatives, displaying efficient PRET and achieving near-infrared (NIR) phosphorescence by macrocyclic CB[n] and the assembly confinements. As compared with weak phosphorescent nanofibers of HAPY/CB[7], the spherical nanoparticles of HAPY/CB[8] not only gave strong green phosphorescence with extended lifetime to 1.27 ms but also could act as the energy donor and confine cationic phenothiazine in the secondary assemblies, leading to highly efficient PRET efficiency (87.27%) from the phosphors to triplet acceptors, realizing phosphorescence emission at 750 nm and an ultralarge Stokes shift of 440 nm. Ultimately, the nanoassembly achieved by the multiscale confinements boosting PRET was successfully applied in targeted cancer cell imaging, providing new insight for fabricating NIR phosphorescence materials.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Huijia Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Lei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Saptal VB, Ranjan P, Zbořil R, Nowicki M, Walkowiak J. Magnetically Recyclable Borane Lewis Acid Catalyst for Hydrosilylation of Imines and Reductive Amination of Carbonyls. CHEMSUSCHEM 2024; 17:e202400058. [PMID: 38630961 DOI: 10.1002/cssc.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Fluorinated arylborane-based Lewis acid catalysts have shown remarkable activity and serve as ideal examples of transition metal-free catalysts for diverse organic transformations. However, their homogeneous nature poses challenges in terms of recyclability and separation from reaction mixtures. This work presents an efficient technique for the heterogenization of boron Lewis acid catalysts by anchoring Piers' borane to allyl-functionalized iron oxide. This catalyst demonstrates excellent activity in the hydrosilylation of imines and the reductive amination of carbonyls using various silanes as reducing agents under mild reaction conditions. The catalyst exhibits broad tolerance towards a wide range of functional substrates. Furthermore, it exhibits good recyclability and can be easily separated from the products using an external magnetic field. This work represents a significant advance in the development of sustainable heterogenous metal-free catalysts for organic transformations.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
| | - Prabodh Ranjan
- Department of Chemistry, Indian Institute of Technology, Kanpur, India, 208016
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic
- CEET, Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Marek Nowicki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
| |
Collapse
|
3
|
Sun XL, Xue H, Gu XY, Li DS, Xiao H, Wan WM. Clickable Polymerization-Induced Emission Luminogens Toward Color-Tunable Modification of Non-Traditional Intrinsic Luminescent Polymers. Macromol Rapid Commun 2024:e2400045. [PMID: 38365211 DOI: 10.1002/marc.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.
Collapse
Affiliation(s)
- Xiao-Li Sun
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hong Xue
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xi-Yao Gu
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Hang Xiao
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wen-Ming Wan
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
- Key Laboratory of Coal to Ethylene Glycol and its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| |
Collapse
|
4
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
5
|
Xue C, Peng M, Zhang Z, Han X, Wang Q, Li C, Liu H, Li T, Yu N, Ren Y. Conjugated Boron Porous Polymers Having Strong p−π* Conjugation for Amine Sensing and Absorption. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Xue Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
6
|
Wang X, Wang G, Li J, Li X, Zhang K. A simple and straightforward polymer post-modification method for wearable difluoroboron β-diketonate luminescent sensors. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yolsal U, Horton TAR, Wang M, Shaver MP. Cyclic Ether Triggers for Polymeric Frustrated Lewis Pair Gels. J Am Chem Soc 2021; 143:12980-12984. [PMID: 34387464 PMCID: PMC8397318 DOI: 10.1021/jacs.1c06408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Sterically hindered
Lewis acid and base centers are unable to form
Lewis adducts, instead forming frustrated Lewis pairs (FLPs), where
latent reactivity can be utilized for the activation of small molecules.
Applying FLP chemistry into polymeric frameworks transforms this chemistry
into responsive and functional materials. Here, we report a versatile
synthesis strategy for the preparation of macromolecular FLPs and
explore its potential with the ring-opening reactions of cyclic ethers.
Addition of the cyclic substrates triggered polymer network formation,
where the extent of cross-linking, strength of network, and reactivity
are tuned by the steric and electronic properties of the ethers. The
resultant networks behave like covalently cross-linked polymers, demonstrating
the versatility of FLPs to simultaneously tune both small-molecule
capture and mechanical properties of materials.
Collapse
Affiliation(s)
- Utku Yolsal
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M1 3BB, United Kingdom
| | - Thomas A R Horton
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M1 3BB, United Kingdom
| | - Meng Wang
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M1 3BB, United Kingdom
| | - Michael P Shaver
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M1 3BB, United Kingdom.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9BL, United Kingdom
| |
Collapse
|
8
|
Sa S, Mukundam V, Kumari A, Das R, Venkatasubbaiah K. Synthesis of pyrazole anchored three-coordinated organoboranes and their application in the detection of picric acid. Dalton Trans 2021; 50:6204-6212. [PMID: 33871517 DOI: 10.1039/d1dt00586c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-coordinated organoboron fluorophores bearing 3,5-diphenyl pyrazoles have been synthesized. The pyrazole anchored boron fluorophores show selective fluorescence quenching response to trinitrophenol (or) picric acid (PA) and have the ability to discriminate picric acid over other analytes. We investigated nonlinear optical (NLO) properties of these three-coordinated organoboron compounds (in solutions) in the presence and absence of PA. In absence of PA, the two-photon-absorption coefficient (β) of organoboron fluorophores exhibits a variation from 2 × 10-12 cm W-1 to 4 × 10-12 cm W-1. The results also reveal that the NLO characteristics of organoboron fluorophores exhibit a discernible variation with PA addition which has correlations with quenching observed in fluorescence measurements.
Collapse
Affiliation(s)
- Shreenibasa Sa
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha, India.
| | - Vanga Mukundam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha, India.
| | - Anupa Kumari
- School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha, India
| | - Ritwick Das
- School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|