1
|
Bixenmann L, Nuhn L. Hemiacetal Ester Side Chains as a Mild Protecting Group for Carboxylic Acids in Polycarbonate Backbones. Macromol Rapid Commun 2025; 46:e2500082. [PMID: 39950719 PMCID: PMC12051728 DOI: 10.1002/marc.202500082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/26/2025] [Indexed: 05/06/2025]
Abstract
Hemiacetal esters are versatile functional groups known for their unique ability to degrade under mild conditions such as exposure to water, alcohols, organic acids, or heat. In this study, hemiacetal esters are introduced as mild, transient protecting groups for carboxylic acids along polycarbonate backbones. A six-membered cyclic carbonate monomer is synthesized by reacting ethyl vinyl ether with a carboxylic acid precursor, demonstrating high efficiency and stability under nucleophilic polymerization conditions. Potential susceptibilities of the hemiacetal esters to transacetalization reactions do not occur under these polymerization conditions. Instead, well-defined homo and PEG-based block copolymers are obtained with narrow molecular weight distributions and preserved hemiacetal ester functionalities. These labile side chain groups enabled facile deprotection, yielding polycarbonates with free carboxylic acids, holding significant potential for applications in drug delivery, sustainable polymers, and advanced functional materials.
Collapse
Affiliation(s)
- Leon Bixenmann
- Institute of Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
- Max Planck Institute for Polymer Research55128MainzGermany
| | - Lutz Nuhn
- Institute of Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
- Max Planck Institute for Polymer Research55128MainzGermany
| |
Collapse
|
2
|
Locks A, Bowles BJ, Brown S, Hailes HC, Hilton ST. 3D Printing with tuneable degradation: Thiol-ene and thiol-yne containing formulations for biomedical applications. Int J Pharm 2025; 674:125432. [PMID: 40049257 DOI: 10.1016/j.ijpharm.2025.125432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Despite advances in the range of materials that can be used in 3D printing and their applications across numerous scientific disciplines, the controlled breakdown of their solid structures after printing remains challenging. In this study we report the development of tuneable degradable 3D printed formulations, that could be 3D printed using standard digital light processing (DLP) and then degraded as required under mild conditions. Thirteen thiol-ene and thiol-yne formulations were designed to provide a range of tailored mechanical properties, with controlled degradation rates, and specific thermal behaviours with potential relevance to biomedical applications. The formulations ranged from ones with high stiffness for structural applications, through to those capable of rapid degradation. These formulations demonstrate full degradability and stability in physiological conditions, showing potential for future drug delivery applications pending further toxicity and release studies. This balance of degradability and mechanical robustness offers significant potential for enhancing patient safety and reducing the invasiveness of surgical treatments as directed by clinical needs.
Collapse
Affiliation(s)
- A Locks
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; UCL Department of Chemistry, University College London, Christopher Ingold Building, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - B J Bowles
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - S Brown
- Scott Bader, Wollaston, Wellingborough NN29 7RJ, United Kingdom
| | - H C Hailes
- UCL Department of Chemistry, University College London, Christopher Ingold Building, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - S T Hilton
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
3
|
Martin-Martin J, Abad M, Lopez de Pariza X, Ezquerra TA, Nogales A, Sardon H, Sebastián V, Oriol L, Piñol M. Degradable Ureido-Polycarbonate Block Copolymers with a Complex UCST Thermoresponse. Macromol Rapid Commun 2025:e2500029. [PMID: 40119569 DOI: 10.1002/marc.202500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Indexed: 03/24/2025]
Abstract
In this work, amphiphilic block copolymers (BCs) consisting of a hydrophilic poly(ethylene glycol) methyl ether (PEG) and a degradable polycarbonate block derived from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) with pendant ureido units, along with corresponding homopolycarbonates are described. Polymers are synthesized by combining ring opening polymerization (ROP) and thiol-ene/yne functionalization to incorporate UCST-promoting ureido groups. For homopolycarbonates, increasing the ureido groups density along the polymer chain facilitates the upper critical solution temperature (UCST)-type thermoresponse in water. Because of their amphiphilic character, BCs form stable self-assemblies either by direct dispersion in water, co-solvent method or microfluidics. Upon heating, these self-assemblies swell, and collapse due to extensive hydration of the polycarbonate block, rather than becoming solubilized. Thermoresponsiveness is analyzed in terms of the number of ureido groups in the polycarbonate for a given polycarbonate block length as well as the length of polycarbonate block. As a proof of concept, the potential of these self-assemblies as thermoresponsive drug nanocarriers is evaluated, using curcumin as a hydrophobic model drug.
Collapse
Affiliation(s)
- Javier Martin-Martin
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Miriam Abad
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Luis Oriol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Milagros Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| |
Collapse
|
4
|
Hauck AV, Komforth P, Erlenbusch J, Stickdorn J, Radacki K, Braunschweig H, Besenius P, Van Herck S, Nuhn L. Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers. Biomater Sci 2025; 13:1414-1425. [PMID: 39575699 DOI: 10.1039/d4bm00949e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pharmacokinetics and biodistribution profiles of active substances are crucial aspects for their safe and successful administration. Since many immunogenic compounds do not meet all requirements for safe and effective administration, well-defined drug nanocarrier systems are necessary with a stimuli-responsive drug-release profile. For this purpose, a novel pH-responsive aliphatic cyclic carbonate is introduced with benzyl ketal side chains and polymerized onto a poly(ethylene glycol) macroinitiator. The resulting block copolymers could be formulated via a solvent-evaporation method into well-defined polymeric micelles. The hydrophobic carbonate block was equipped with an acid degradable ketal side group that served as an acid-responsive functional group. Already subtle pH alternations led to micelle disassembly and the release of the active cargo. Furthermore, basic carbonate backbone degradation assured the pH responsiveness of the nanocarriers in both acidic and basic conditions. To investigate the delivery capacity of polymeric micelles, the model small molecule compound CL075, which serves as an immunotherapeutic TLR7/8 agonist, was encapsulated. Incubation studies with human blood plasma revealed the absence of undesirable protein adsorption on the drug-loaded nanoparticles. Furthermore, in vitro applications confirmed cell uptake of the nanodrug formulations by macrophages and the induction of payload-mediated immune stimulation. Altogether, these results underline the huge potential of the developed multi-pH-responsive polymeric nanocarrier for immunodrug delivery.
Collapse
Affiliation(s)
- Adrian V Hauck
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany.
| | - Patric Komforth
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jessica Erlenbusch
- Department of Chemistry, Johannes-Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | | | - Krzysztof Radacki
- Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes-Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | - Simon Van Herck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lutz Nuhn
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
5
|
Sun W, Lu K, Wang L, Hao Q, Liu J, Wang Y, Wu Z, Chen H. Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. J Mater Chem B 2022; 10:5203-5210. [PMID: 35734968 DOI: 10.1039/d2tb01052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a biodegradable and biocompatible biomaterial, aliphatic polycarbonates (APCs) have attracted substantial attention in terms of post-polymerization modification (PPM) for functionalization. A strategy for the introduction of sulfur(VI)-fluoride exchange (SuFEx) click chemistry into APCs for PPM is proposed for the first time in this work. 4'-(Fluorosulfonyl)benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (FMC) was designed as a SuFEx clickable cyclic carbonate for APCs via ring-opening polymerization (ROP), and an operational and nontoxic synthetic route was achieved. FMC managed to undergo both ROP and PPM through the SuFEx click chemistry organocatalytically without constraining or antagonizing each other, using 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) as a co-organocatalyst here. Its ROP was systematically investigated, and density functional theory (DFT) calculations were performed to understand the acid-base catalytic mechanism in the anionic ROP. Exploratory investigations into PPM by SuFEx of poly(FMC) were conducted as biomaterials, and the one-pot strategies to achieve both ROP and SuFEx were confirmed.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Ling Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
6
|
Tan J, Zhao Y, Hedrick JL, Yang YY. Effects of Hydrophobicity on Antimicrobial Activity, Selectivity, and Functional Mechanism of Guanidinium-Functionalized Polymers. Adv Healthc Mater 2022; 11:e2100482. [PMID: 33987953 DOI: 10.1002/adhm.202100482] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/21/2021] [Indexed: 11/06/2022]
Abstract
In this study, a series of guanidinium-functionalized polycarbonate random co-polymers is prepared from organocatalytic ring-opening polymerization to investigate the effect of the hydrophobic side chain (ethyl, propyl, isopropyl, benzyl, and hexyl) on their antimicrobial activity and selectivity. Although the polymers exhibit similar minimum inhibitory concentrations, the more hydrophobic polymers exhibit a faster rate of bacteria elimination. At higher percentage content (20 mol%), polymers with more hydrophobic side chains suffer from poor selectivity due to their high hemolytic activity. The highly hydrophobic co-polymer, containing the hydrophobic hexyl-functionalized cyclic carbonate, kills bacteria via a membrane-disruptive mechanism. Micelle formation leads to a lower extent of membrane disruption. This study unravels the effects of hydrophobic side chains on the activities of the polymers and their killing mechanism, providing insights into the design of new antimicrobial polymers.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
7
|
Hedrick JL, Piunova V, Park NH, Erdmann T, Arrechea PL. Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. ACS Macro Lett 2022; 11:368-375. [PMID: 35575375 DOI: 10.1021/acsmacrolett.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aliphatic polycarbonates represent an important class of materials with diverse applications ranging from battery electrolytes, polyurethane intermediates, and materials for biomedical applications. These materials can be produced via the ring-opening polymerization (ROP) of six- to eight-membered cyclic carbonates derived from precursor 1,3- and 1,5-diols. These diols can contain a range of functional groups depending on the desired thermal, mechanical, and solution properties. Generally, the ring closure to form the cyclic carbonate requires the use of undesirable and hazardous reagents. Advances in synthetic methodologies and catalysis have enabled the use of carbon dioxide (CO2) to perform these transformations with a high conversion of diol to cyclic carbonate, yet modest isolated yields due to oligomerization side reactions. In this Letter, we evaluate a series of bases in the presence of p-toluenesulfonyl chloride and the appropriate diol to better understand their effect on the yield and presence of oligomer byproducts during cyclic carbonate formation from CO2. From this study, N,N-tetramethylethylenediamine (TMEDA) was identified as an optimal base, facilitating the preparation of a diverse array of both six- and eight-membered carbonates from CO2 within 10 to 15 min. The robust conditions for both, the preparation of the diol precursor, and the TMEDA-mediated carbonate synthesis enabled readily telescoping the two-step reaction sequence, greatly simplifying the process of monomer preparation.
Collapse
Affiliation(s)
- James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Victoria Piunova
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H. Park
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Tim Erdmann
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Pedro L. Arrechea
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
8
|
Wang C, Zhang X, Zhao W, Liu X, Wang Q, Sun J. Synthesis of Aliphatic Hyperbranched Polycarbonates via Organo-Catalyzed “A1+B2”-Ring-Opening Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chengliang Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Xu Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Wei Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Xin Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Qingfu Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| |
Collapse
|
9
|
Watanabe Y, Takaoka S, Haga Y, Kishi K, Hakozaki S, Narumi A, Kato T, Tanaka M, Fukushima K. Organic carboxylate salt-enabled alternative synthetic routes for bio-functional cyclic carbonates and aliphatic polycarbonates. Polym Chem 2022. [DOI: 10.1039/d2py00705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyclic carbonate with an ammonium carboxylate residue was found to serve as a nucleophile for esterification with alkyl bromides via the SN2 mechanism.
Collapse
Affiliation(s)
- Yuya Watanabe
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shunya Takaoka
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuta Haga
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kohei Kishi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shunta Hakozaki
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Fukushima
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|