1
|
Charland-Martin A, Collier GS. Understanding Degradation Dynamics of Azomethine-containing Conjugated Polymers. Macromolecules 2024; 57:6146-6155. [PMID: 39005947 PMCID: PMC11238594 DOI: 10.1021/acs.macromol.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Understanding the influence of chemical environments on the degradation properties of conjugated polymers is an important task for the continued development of sustainable materials with potential utility in biomedical and optoelectronic applications. Azomethine-containing polymers were synthesized via palladium-catalyzed direct arylation polymerization (DArP) and used to study fundamental degradation trends upon exposure to acid. Shifts in the UV-vis absorbance spectra and the appearance/disappearance of aldehyde and imine diagnostic peaks within the 1H NMR spectra indicate that the polymers will degrade in the presence of acid. After degradation, the aldehyde starting material was recovered in high yields and was shown to maintain structural integrity when compared with commercial starting materials. Solution-degradation studies found that rates of degradation vary from 5 h to 90 s depending on the choice of solvent or acid used for hydrolysis. Additionally, the polymer was shown to degrade in the presence of perfluoroalkyl substances (PFASs), which makes them potentially useful as PFAS-sensitive sensors. Ultimately, this research provides strategies to control the degradation kinetics of azomethine-containing polymers through the manipulation of environmental factors and guides the continued development of azomethine-based materials.
Collapse
Affiliation(s)
- Ariane Charland-Martin
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Graham S. Collier
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
- School
of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
2
|
Uva A, Michailovich S, Hsu NSY, Tran H. Degradable π-Conjugated Polymers. J Am Chem Soc 2024; 146:12271-12287. [PMID: 38656104 DOI: 10.1021/jacs.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The integration of next-generation electronics into society is rapidly reshaping our daily interactions and lifestyles, revolutionizing communication and engagement with the world. Future electronics promise stimuli-responsive features and enhanced biocompatibility, such as skin-like health monitors and sensors embedded in food packaging, transforming healthcare and reducing food waste. Imparting degradability may reduce the adverse environmental impact of next-generation electronics and lead to opportunities for environmental and health monitoring. While advancements have been made in producing degradable materials for encapsulants, substrates, and dielectrics, the availability of degradable conducting and semiconducting materials remains restricted. π-Conjugated polymers are promising candidates for the development of degradable conductors or semiconductors due to the ability to tune their stimuli-responsiveness, biocompatibility, and mechanical durability. This perspective highlights three design considerations: the selection of π-conjugated monomers, synthetic coupling strategies, and degradation of π-conjugated polymers, for generating π-conjugated materials for degradable electronics. We describe the current challenges with monomeric design and present options to circumvent these issues by highlighting biobased π-conjugated compounds with known degradation pathways and stable monomers that allow for chemically recyclable polymers. Next, we present coupling strategies that are compatible for the synthesis of degradable π-conjugated polymers, including direct arylation polymerization and enzymatic polymerization. Lastly, we discuss various modes of depolymerization and characterization techniques to enhance our comprehension of potential degradation byproducts formed during polymer cleavage. Our perspective considers these three design parameters in parallel rather than independently while having a targeted application in mind to accelerate the discovery of next-generation high-performance π-conjugated polymers for degradable organic electronics.
Collapse
Affiliation(s)
- Azalea Uva
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sofia Michailovich
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Nathan Sung Yuan Hsu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Helen Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
3
|
Bartlett KA, Charland-Martin A, Lawton J, Tomlinson AL, Collier GS. Azomethine-Containing Pyrrolo[3,2-b]pyrrole Copolymers for Simple and Degradable Conjugated Polymers. Macromol Rapid Commun 2024; 45:e2300220. [PMID: 37449343 DOI: 10.1002/marc.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Conjugated polymers have received significant attention as potentially lightweight and highly tailorable alternatives to inorganic semiconductors, but their synthesis is often complex, produces toxic byproducts, and they are not typically designed to be degradable or recyclable. These drawbacks necessitate dedicated efforts to discover materials with design motifs that enable targeted and efficient degradation of conjugated polymers. In this vein, the synthetic simplicity of 1,4-dihydropyrrolo[3,2-b]pyrroles (DHPPs) is exploited to access azomethine-containing copolymers via a benign acid-catalyzed polycondensation protocol. Polymerizations involve reacting a dialdehyde-functionalized dihydropyrrolopyrrole with p-phenylenediamine as the comonomer using p-toluenesulfonic acid as a catalyst. The inherent dynamic equilibrium of the azomethine bonds subsequently enabled the degradation of the polymers in solution in the presence of acid. Degradation of the polymers is monitored via NMR, UV-vis absorbance, and fluorescence spectroscopies, and the polymers are shown to be fully degradable. Notably, while absorbance measurements reveal a continued shift to higher energies with extended exposure to acid, fluorescence measurements show a substantial increase in the fluorescence response upon degradation. Results from this study encourage the continued development of environmentally-conscious polymerizations to attain polymeric materials with useful properties while simultaneously creating polymers with structural handles for end-of-life management or/and recyclability.
Collapse
Affiliation(s)
- Kimberley A Bartlett
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Ariane Charland-Martin
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Jonathan Lawton
- Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, GA, 30597, USA
| | - Aimée L Tomlinson
- Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, GA, 30597, USA
| | - Graham S Collier
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA
| |
Collapse
|
4
|
Uva A, Lin A, Tran H. Biobased, Degradable, and Conjugated Poly(Azomethine)s. J Am Chem Soc 2023; 145:3606-3614. [PMID: 36748883 DOI: 10.1021/jacs.2c12668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carotenoids are a class of biobased conjugated molecules that bear a resemblance to the substructure of polyacetylene, a well-known conductive but insoluble polymer. Solubility is an important physical attribute for processing materials using different techniques. To impart solubility in polymers, alkyl side chains are often included in the molecular design. While these design strategies are well explored in conjugated systems, they have not been implemented with carotenoids as a building block in polymers. Here, we show a series of carotenoid-based polymers with varying side chain lengths to tune solubility. Using carotenoid and p-phenylenediamine-based monomers, degradable and biobased poly(azomethine)s were synthesized via imine polycondensation. Maximum solubilities corresponding to the varying alkyl chain lengths were quantitatively determined by ultraviolet-visible (UV-vis) absorption spectroscopy. Since carotenoids are biobased with known degradation products, the effect of acidic and artificial sunlight-promoted degradation was systematically investigated using UV-vis spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, gel permeation chromatography (GPC), and high-resolution mass spectroscopy (HRMS). Our polymer system was found to have two modes of on-demand degradation, with acid hydrolysis accelerating the rate of polymer degradation and artificial sunlight generating additional degradation products. This work highlights carotenoid monomers as viable candidates in the design of biobased, degradable, and conjugated polymers.
Collapse
Affiliation(s)
- Azalea Uva
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Angela Lin
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Helen Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Ritaine D, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules 2023; 28:1471. [PMID: 36771137 PMCID: PMC9920975 DOI: 10.3390/molecules28031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their properties is effective via Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). However, the length and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by preventing close contact between the nanotubes. Here, we investigate the functionalization of a polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing. The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and 1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next investigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy. The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradiation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that may find applications for SWNT-based materials in which side-chain removal could lead to higher device performance.
Collapse
Affiliation(s)
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
6
|
Ritaine D, Adronov A. Functionalization of polyfluorene‐wrapped carbon nanotubes using thermally cleavable side‐chains. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
8
|
Wang J, Lei T. Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes. NANOSCALE 2022; 14:1096-1106. [PMID: 34989744 DOI: 10.1039/d1nr06635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconducting single-walled carbon nanotubes SWCNTs (s-SWCNTs) are considered one of the most promising alternatives to traditional silicon-based semiconductors. In particular, large-diameter s-SWCNTs (>1.2 nm) exhibit more advantages over small-diameter ones in high-performance electronic applications because of their higher charge carrier mobility and reduced Schottky barrier height. Great efforts have been made to enriching large-diameter s-SWCNTs from mass-produced raw CNTs that contain both metallic SWCNTs and s-SWCNTs. Among separation technologies, the effective and scalable ones are conjugated polymer wrapping (CPW), gel permeation chromatography (GC), aqueous two-phase extraction (ATPE), and density gradient ultracentrifugation (DGU). In this review, we survey recent progress on enriching large-diameter s-SWCNTs using those methods and outline the strategies and challenges in the separation according to the electronic type and chirality of SWCNTs. Finally, we highlight some applications of the enriched large-diameter s-SWCNTs and outlook for the future of SWCNT-based electronic devices.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory of Polymer Chemistry and Physics (MOE), School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics (MOE), School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|