1
|
Park S, Gerber A, Santa C, Aktug G, Hengerer B, Clark HA, Jonas U, Dostalek J, Sergelen K. Molecularly Responsive Aptamer-Functionalized Hydrogel for Continuous Plasmonic Biomonitoring. J Am Chem Soc 2025; 147:11485-11500. [PMID: 40113339 PMCID: PMC11969548 DOI: 10.1021/jacs.5c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Continuous in vivo monitoring of small molecule biomarkers requires biosensors with reversibility, sensitivity in physiologically relevant ranges, and biological stability. Leveraging the real-time, label-free detection capability of surface plasmon resonance (SPR) technology, a molecularly responsive hydrogel film is introduced to enhance small molecule sensitivity. This advanced biosensing platform utilizes split-aptamer-cross-linked hydrogels (aptagels) engineered using 8-arm poly(ethylene glycol) macromers, capable of directly and reversibly detecting vancomycin. Investigation through SPR and optical waveguide mode, along with quartz crystal microbalance with dissipation (QCM-D) monitoring, reveals that the reversible formation of analyte-induced ternary molecular complexes leads to aptagel contraction and significant refractive index changes. Optimization of aptamer cross-link distribution and complementarity of split-aptamer pairs maximizes conformational changes of the aptagel, demonstrating a detection limit of 160-250 nM for vancomycin (6-9 fold improvement over monolayer counterpart) with a broad linear sensing range up to 1 mM. The aptagel maintains stability over 24 h in blood serum and 5 weeks in diluted blood plasma (mimicking interstitial fluid). This structurally responsive aptagel platform with superior stability and sensitivity offers promising avenues for continuous in vivo monitoring of small molecules.
Collapse
Affiliation(s)
| | - Alice Gerber
- BioMed
X Institute, Heidelberg 69120, Germany
- Faculty
of Biotechnology, Mannheim University of
Applied Sciences, Mannheim 68163, Germany
| | - Cátia Santa
- BioMed
X Institute, Heidelberg 69120, Germany
| | - Gizem Aktug
- FZU-Institute
of Physics, Czech Academy of Sciences, Prague 180 00, Czech Republic
- Department
of Biophysics, Chemical and Macromolecular Physics, Faculty of Mathematics
and Physics, Charles University, Prague 150 06, Czech Republic
| | - Bastian Hengerer
- Central
Nervous System Diseases Research, Boehringer
Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88400, Germany
| | - Heather A. Clark
- School of
Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Ulrich Jonas
- Macromolecular
Chemistry, Department of Chemistry and Biology, University of Siegen, Siegen 57076, Germany
| | - Jakub Dostalek
- FZU-Institute
of Physics, Czech Academy of Sciences, Prague 180 00, Czech Republic
- LiST-Life
Sciences Technology, Danube Private University, Wiener, Neustadt 2700, Austria
| | | |
Collapse
|
2
|
Sun M, Song R, Fang Y, Xu J, Yang Z, Zhang H. DNA-Based Complexes and Composites: A Review of Fabrication Methods, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51899-51915. [PMID: 39314016 DOI: 10.1021/acsami.4c13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Deoxyribonucleic acid (DNA), a macromolecule that stores genetic information in organisms, has recently been gradually developed into a building block for new materials due to its stable chemical structure and excellent biocompatibility. The efficient preparation and functional integration of various molecular complexes and composite materials based on nucleic acid skeletons have been successfully achieved. These versatile materials possess excellent physical and chemical properties inherent to certain inorganic or organic molecules but are endowed with specific physiological functions by nucleic acids, demonstrating unique advantages and potential applications in materials science, nanotechnology, and biomedical engineering in recent years. However, issues such as the production cost, biological stability, and potential immunogenicity of DNA have presented some unprecedented challenges to the application of these materials in the field. This review summarizes the cutting-edge manufacturing techniques and unique properties of DNA-based complexes and composites and discusses the trends, challenges, and opportunities for the future development of nucleic acid-based materials.
Collapse
Affiliation(s)
- Mengqiu Sun
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Song
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Yangwu Fang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Jiuzhou Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
3
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Lallemang M, Akintayo CO, Wenzel C, Chen W, Sielaff L, Ripp A, Jessen HJ, Balzer BN, Walther A, Hugel T. Hierarchical Mechanical Transduction of Precision-Engineered DNA Hydrogels with Sacrificial Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59714-59721. [PMID: 38095074 DOI: 10.1021/acsami.3c15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Engineering the response to external signals in mechanically switchable hydrogels is important to promote smart materials applications. However, comparably little attention has focused on embedded precision mechanisms for autonomous nonlinear response in mechanical profiles in hydrogels, and we lack understanding of how the behavior from the molecular scale transduces to the macroscale. Here, we design a nonlinear stress-strain response into hydrogels by engineering sacrificial DNA hairpin loops into model network hydrogels formed from star-shaped building blocks. We characterize the force-extension response of single DNA hairpins and are able to describe how the specific topology influences the nonlinear mechanical behavior at different length scales. For this purpose, we utilize force spectroscopy as well as microscopic and macroscopic deformation tests. This study contributes to a better understanding of designing nonlinear strain-adaptive features into hydrogel materials.
Collapse
Affiliation(s)
- Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Cecilia Oluwadunsin Akintayo
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Christiane Wenzel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | - Lucca Sielaff
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Alexander Ripp
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Henning J Jessen
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg 79104, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
5
|
Rajasooriya T, Ogasawara H, Dong Y, Mancuso JN, Salaita K. Force-Triggered Self-Destructive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305544. [PMID: 37724392 PMCID: PMC10764057 DOI: 10.1002/adma.202305544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Self-destructive polymers (SDPs) are defined as a class of smart polymers that autonomously degrade upon experiencing an external trigger, such as a chemical cue or optical excitation. Because SDPs release the materials trapped inside the network upon degradation, they have potential applications in drug delivery and analytical sensing. However, no known SDPs that respond to external mechanical forces have been reported, as it is fundamentally challenging to create mechano-sensitivity in general and especially so for force levels below those required for classical force-induced bond scission. To address this challenge, the development of force-triggered SDPs composed of DNA crosslinked hydrogels doped with nucleases is described here. Externally applied piconewton forces selectively expose enzymatic cleavage sites within the DNA crosslinks, resulting in rapid polymer self-degradation. The synthesis and the chemical and mechanical characterization of DNA crosslinked hydrogels, as well as the kinetics of force-triggered hydrolysis, are described. As a proof-of-concept, force-triggered and time-dependent rheological changes in the polymer as well as encapsulated nanoparticle release are demonstrated. Finally, that the kinetics of self-destruction are shown to be tuned as a function of nuclease concentration, incubation time, and thermodynamic stability of DNA crosslinkers.
Collapse
Affiliation(s)
| | | | - Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
6
|
Peng YH, Hsiao SK, Gupta K, Ruland A, Auernhammer GK, Maitz MF, Boye S, Lattner J, Gerri C, Honigmann A, Werner C, Krieg E. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. NATURE NANOTECHNOLOGY 2023; 18:1463-1473. [PMID: 37550574 PMCID: PMC10716043 DOI: 10.1038/s41565-023-01483-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.
Collapse
Affiliation(s)
- Yu-Hsuan Peng
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Syuan-Ku Hsiao
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Krishna Gupta
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - André Ruland
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Günter K Auernhammer
- Institute for Physical Chemistry and Polymer Physics, Polymer Interfaces, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Manfred F Maitz
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Susanne Boye
- Institute for Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Johanna Lattner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Claudia Gerri
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Elisha Krieg
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Tauber FJ, Slesarenko V. Early career scientists converse on the future of soft robotics. Front Robot AI 2023; 10:1129827. [PMID: 36909362 PMCID: PMC9994530 DOI: 10.3389/frobt.2023.1129827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
During the recent decade, we have witnessed an extraordinary flourishing of soft robotics. Rekindled interest in soft robots is partially associated with the advances in manufacturing techniques that enable the fabrication of sophisticated multi-material robotic bodies with dimensions ranging across multiple length scales. In recent manuscripts, a reader might find peculiar-looking soft robots capable of grasping, walking, or swimming. However, the growth in publication numbers does not always reflect the real progress in the field since many manuscripts employ very similar ideas and just tweak soft body geometries. Therefore, we unreservedly agree with the sentiment that future research must move beyond "soft for soft's sake." Soft robotics is an undoubtedly fascinating field, but it requires a critical assessment of the limitations and challenges, enabling us to spotlight the areas and directions where soft robots will have the best leverage over their traditional counterparts. In this perspective paper, we discuss the current state of robotic research related to such important aspects as energy autonomy, electronic-free logic, and sustainability. The goal is to critically look at perspectives of soft robotics from two opposite points of view provided by early career researchers and highlight the most promising future direction, that is, in our opinion, the employment of soft robotic technologies for soft bio-inspired artificial organs.
Collapse
Affiliation(s)
- Falk J. Tauber
- Cluster of Excellence livMatS, FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
- Plant Biomechanics Group (PBG) Freiburg, Botanic Garden of the University of Freiburg, Freiburg im Breisgau, Germany
| | - Viacheslav Slesarenko
- Cluster of Excellence livMatS, FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Ohira M, Katashima T, Naito M, Aoki D, Yoshikawa Y, Iwase H, Takata SI, Miyata K, Chung UI, Sakai T, Shibayama M, Li X. Star-Polymer-DNA Gels Showing Highly Predictable and Tunable Mechanical Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108818. [PMID: 35034389 DOI: 10.1002/adma.202108818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Dynamically crosslinked gels are appealing materials for applications that require time-dependent mechanical responses. DNA duplexes are ideal crosslinkers for building such gels because of their excellent sequence addressability and flexible tunability in bond energy. However, the mechanical responses of most DNA gels are complicated and unpredictable. Here, a DNA gel with a highly homogeneous gel network and well predictable mechanical behaviors is demonstrated by using a pair of star-polymer-DNA precursors with presimulated DNA sequences showing the two-state transition. The melting curve analysis of the DNA gels reveals the good correspondence between the thermodynamic potentials of the DNA crosslinkers and the presimulated values by DNA calculators. Stress-relaxation tests and dissociation kinetics measurements show that the macroscopic relaxation time of the DNA gels is approximately equal to the lifetime of the DNA crosslinkers over 4 orders of magnitude from 0.1-2000 s. Furthermore, a series of durability tests find the DNA gels are hysteresis-less and self-healable after the applications of repeated temperature and mechanical stimuli. These results demonstrate the great potential of star-polymer-DNA precursors for building gels with predictable and tunable viscoelastic properties, suitable for applications such as stress-response extracellular matrices, injectable solids, and soft robotics.
Collapse
Affiliation(s)
- Masashi Ohira
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yusuke Yoshikawa
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
| | - Shin-Ichi Takata
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
9
|
Koziol MF, Nguyen PL, Gallo S, Olsen BD, Seiffert S. Hierarchy of relaxation times in supramolecular polymer model networks. Phys Chem Chem Phys 2022; 24:4859-4870. [PMID: 35136895 DOI: 10.1039/d1cp04213k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer gels are an evolving class of soft materials with a vast number of properties that can be tuned to desired applications. Despite continuous advances concerning polymer synthesis, sustainability or adaptability, a consistent understanding of the interplay between structure, dynamics, and diffusion processes within transient networks is lacking. In this study, the hierarchy of several relaxation processes is investigated, starting from a microscopic perspective of a single sticker dissociation event up to the center-of-mass diffusion of a star-shaped polymer building block on different length scales, as well as the resulting macroscopic mechanical response to applied external stress. In addition to that, a second focus is placed on the gel micro-structure that is analyzed by light scattering. Conversion of the dynamic light scattering (DLS) inverse length scale into real space allows for a combination of relaxation times with those obtained by forced Rayleigh scattering (FRS). For these investigations, a model-type metallo-supramolecular network consisting of narrowly dispersed tetra-arm poly(ethylene glycol)-terpyridine macromolecules that are interconnected via complexation with zinc ions is chosen. Assembling the obtained activation energies reveals that all complex dissociation-governed relaxation processes exhibit similar activation energies.
Collapse
Affiliation(s)
- Martha Franziska Koziol
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Phuong Loan Nguyen
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Shannon Gallo
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
10
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|