1
|
Song J, Kawakami K, Ariga K. Localized assembly in biological activity: Origin of life and future of nanoarchitectonics. Adv Colloid Interface Sci 2025; 339:103420. [PMID: 39923322 DOI: 10.1016/j.cis.2025.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The concept of nanoarchitectonics has emerged as a post-nanotechnology paradigm in the field of functional materials development. This concept entails the construction of functional material systems at the nanoscale, based on the knowledge acquired from nanotechnology. In biological systems, advanced nanoarchitectonics is achieved through precise structural organization governed by spatial localization, a process facilitated by localized assembly mechanisms. A thorough understanding of the principles of localized assembly is crucial for the creation of complex, asymmetric, hierarchical organizations that are similar in structure and function to living organisms. This review explores the concept of localized assembly, highlighting its biological inspiration, providing representative examples, and discussing its contributions to nanoarchitectonics. Key examples include assemblies using biological materials, those mimicking cellular functions, and those occurring within cells. Additionally, the role of interfacial interactions and liquid-liquid phase separation in localized assembly is emphasized. Particularly, the utilization of liquid-liquid phase separation demonstrates a remarkable capacity for forming intricate compartmentalized structures without discernible membranes, paving the way for multifunctional, localized systems. These localized assemblies are fundamental to essential biological functions and provide valuable insights into the molecular mechanisms underlying the origin of cells and life. Such understanding holds significant promise for advancing materials nanoarchitectonics, particularly in biomedical applications.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
2
|
Ding M, Wang Y, Gong X, Luo M, Yin X, Yu J, Zhang S, Ding B. Fluorine-Free Nanofiber/Network Membranes with Interconnected Tortuous Channels for High-Performance Liquid-Repellency and Breathability. ACS NANO 2025; 19:5539-5548. [PMID: 39885764 DOI: 10.1021/acsnano.4c14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The excessive use of fluoride in fibrous membranes poses significant bioaccumulative threats to the environment and human health. However, most existing membranes used in protective clothing and desalination systems show high fluorine dependence and inevitable trade-offs between liquid repellency and breathability. Herein, fluorine-free bonded scaffolded nanofiber/network membranes are developed using the electro-coating-netting technique to achieve high-performance liquid-repellency and breathability. By manipulating the stretching of electrospun jets and the polarization of electrets, rough and electrostatic wetting nanofibers are obtained as scaffolds, on which long-chain alkyl precursors are coated to assemble 2D networks consisting of nanowires with diameters of ∼42 nm and bonding points. The resultant fluorine-free membranes exhibit small pore sizes of ∼460 nm, highly interconnected tortuous channels, a water contact angle of ∼138°, and elastic elongation up to 300%, thereby providing both high-performance liquid repellency (125 kPa) and vapor permeability (4206 g m-2 d-1), making them effective for use in protective clothing and desalination. This work could inspire innovative design of ecofriendly nanofibrous materials for high-performance filtration and separation.
Collapse
Affiliation(s)
- Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Yuan Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Mukun Luo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| |
Collapse
|
3
|
Xu Q, Yu C, Jiang L, Wang Y, Liu F, Jiang W, Zhou Y. Coacervate-Assisted Polymerization-Induced Self-Assembly of Chiral Alternating Copolymers into Hierarchical Bishell Capsules with Sub-5 nm Ultrathin Lamellae. SMALL METHODS 2023; 7:e2300136. [PMID: 37116085 DOI: 10.1002/smtd.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Hierarchical self-assembly of synthetic polymers in solution represents one of the sophisticated strategies to replicate the natural superstructures which lay the basis for their superb functions. However, it is still quite challenging to increase the degree of complexity of the as-prepared assemblies, especially in a large scale. Liquid-liquid phase separation (LLPS) widely exists in cells and is assumed to be responsible for the formation of many cellular organelles without membranes. Herein, through integrating LLPS with the polymerization-induced self-assembly (PISA), a coacervate-assisted PISA (CAPISA) methodology to realize the one-pot and scalable preparation of hierarchical bishell capsules (BCs) from nanosheets with ultrathin lamellae phase (sub-5 nm), microflakes, unishell capsules to final BCs in a bottom-up sequence is presented. Both the self-assembled structure and the dynamic formation process of BCs have been disclosed. Since CAPISA has combined the advantages of coacervates, click chemistry, interfacial reaction and PISA, it is believed that it will become a promising option to fabricate biomimetic polymer materials with higher structural complexity and more sophisticated functions.
Collapse
Affiliation(s)
- Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Luo C, Wang X, Liu Y, Cai J, Lu X, Cai Y. Like-Charge PISA: Polymerization-Induced Like-Charge Electrostatic Self-Assembly. ACS Macro Lett 2023; 12:1045-1051. [PMID: 37440526 DOI: 10.1021/acsmacrolett.3c00372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
We report the use of l-aspartic acid chiral ionic hydrogen bonds to drive liquid-liquid phase separation (LLPS) and precision two-dimensional electrostatic self-assembly in photo-RAFT aqueous polymerization-induced self-assembly (photo-PISA). Homopolymerization can yield salt-resistant, 3 nm ultrafine fibril-structured 5 nm ultrathin lamellae via LLPS, a left-to-right-handed chirality transition, and a droplets-to-lamellae transition. Like-charge block copolymerization leads to supercharged yet identical fibril-structured ultrathin lamellae, also, via LLPS, the left-to-right chirality transition and the droplets-to-lamellae transition. Ultrafine structures maintain intactness upon the seeded polymerization of the oppositely charged monomer. This work demonstrates that amino acid chiral ionic hydrogen bonds are powerful for the precision synthesis of salt-resistant ultrathin membrane nanomaterials.
Collapse
Affiliation(s)
- Caihui Luo
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanyuan Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Xiong W, Wang X, Liu Y, Luo C, Lu X, Cai Y. Polymerization-Induced Electrostatic Self-Assembly Governed by Guanidinium Ionic Hydrogen Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weixing Xiong
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanyuan Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Caihui Luo
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wu J, Zhang L, Chen Y, Tan J. Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Lett 2022; 11:910-918. [PMID: 35793539 DOI: 10.1021/acsmacrolett.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, an ω,ω-heterodifunctional macromolecular reversible addition-fragmentation chain transfer (macro-RAFT) agent containing two different RAFT end groups was synthesized and employed to mediate aqueous photoinitiated RAFT dispersion polymerization of a methacrylic monomer. Because of the different RAFT controllability of two RAFT end groups toward methacrylic monomers, the RAFT end group with good controllability dominated the polymerization while the other RAFT end group with poor controllability was unreacted, leading to the formation of linear block copolymers. Because of the unique structure of the linear block copolymers, a diverse set of block copolymer nanoparticles with rich RAFT groups at the interface of the hydrophilic corona/the hydrophobic core were successfully prepared. Finally, μ-A(BC)C miktoarm star block copolymer nanoparticles were prepared by RAFT seeded emulsion polymerization of an acrylic monomer, which enables the further morphological control over polymer nanoparticles. We believe that the utilization of an ω,ω-heterodifunctional macro-RAFT agent in heterogeneous RAFT polymerization will offer considerable opportunities for the rational synthesis of well-defined molecular architectures and polymer nanoparticles.
Collapse
Affiliation(s)
- Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
8
|
Zhang Q, Wang R, Chen Y, Zhang L, Tan J. Block Copolymer Vesicles with Tunable Membrane Thicknesses and Compositions Prepared by Aqueous Seeded Photoinitiated Polymerization-Induced Self-Assembly at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2699-2710. [PMID: 35176211 DOI: 10.1021/acs.langmuir.1c03430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer vesicles with diverse functionalities and intrinsic hollow structures have received considerable attention due to their broad applications in biomedical fields, including drug delivery, bioimaging, theranostics, gene therapy, etc. However, efficient preparation of block copolymer vesicles with tunable membrane thicknesses and compositions under mild conditions is still a challenge. Herein, we report an aqueous seeded photoinitiated polymerization-induced self-assembly (photo-PISA) for the precise preparation of block copolymer vesicles at room temperature. By changing the total degree of polymerization (DP) of the hydrophobic block in seeded photo-PISA, one can easily tune the membrane thickness without compromising the morphology of vesicles. Moreover, by adding different comonomers such as hydrophobic monomers, hydrophilic monomers, and cross-linkers into seeded photo-PISA, vesicles with different compositions could be prepared without compromising the morphology and colloidal stability. Polymerization kinetics show that seeded photo-PISA can skip the step of in situ self-assembly with a short homogeneous polymerization stage being observed. To demonstrate potential biological applications, enzymatic nanoreactors were constructed by loading horseradish peroxidase (HRP) inside vesicles via seeded photo-PISA. The enzymatic properties of these nanoreactors could be easily regulated by changing the membrane thickness and hydrophobicity. It is expected that this method can provide a facile platform for the precise preparation of block copolymer vesicles that may find applications in different fields.
Collapse
Affiliation(s)
- Qichao Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Wang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
9
|
Yu K, Wang X, Luo C, Cao Y, Cai J, Lu X, Cai Y. Two-Dimensional Polymerization-Induced Electrostatic Self-Assembly via C12-Polyelectrolyte Lamellar Template. Chem Commun (Camb) 2022; 58:6793-6796. [DOI: 10.1039/d2cc02025d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a template strategy for precision synthesis of “complex coacervates-in-dodecyl atmosphere” ultrathin lamellae possessing exceptional shape-preservation and charge-tolerance properties.
Collapse
|
10
|
Ren H, Wei Z, Wei H, Yu D, Li H, Bi F, Xu B, Zhang H, Hua Z, Yang G. Pyridine-containing block copolymeric nano-assemblies obtained through complementary hydrogen-bonding directed polymerization-induced self-assembly in water. Polym Chem 2022. [DOI: 10.1039/d2py00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diversity of pyridine-containing polymeric nanomaterials with controllable structures and multiple responses were developed through complementary hydrogen-bonding directed polymerization-induced self-assembly in aqueous solution.
Collapse
Affiliation(s)
- Hui Ren
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Binbin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hui Zhang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
11
|
Ma L, Xiong W, Yu K, Wang X, Cao Y, Lu X, Cai Y. Liquid-Phase Condensation via Macromolecular Crowding in Polymerization-Induced Electrostatic Self-Assembly. ACS Macro Lett 2021; 10:1410-1415. [PMID: 35549018 DOI: 10.1021/acsmacrolett.1c00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Macromolecular crowding plays a key role in liquid-phase condensation of proteins and membraneless organelles yet is largely unexplored for artificial liquid materials. Herein, we present a strategy for direct access to multiphase liquid condensates with individual charged/neutral subdomains, by introducing macromolecular crowding to our previous protocol of liquid-liquid phase-separation-driven polymerization-induced electrostatic self-assembly (LLPS-PIESA). We show that reversible addition fragmentation chain transfer (RAFT) aqueous dispersion photo-copolymerization of a charged monomer with a specific neutral monomer, in the presence of a polar macrochain transfer agent (CTA) and an oppositely charged polyion, can induce self-sorting and macromolecular crowding. LLPS-PIESA proceeds via liquid-phase condensation of as-assembled nascent clusters up to biologically important nanostructured multiphase condensates with individual charged/neutral subdomains.
Collapse
Affiliation(s)
- Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weixing Xiong
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kaiwen Yu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ying Cao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|