1
|
Abou Hamad N, Akintola J, Schlenoff JB. Quantifying Hydrophilicity in Polyelectrolytes and Polyzwitterions. Macromolecules 2025; 58:3422-3430. [PMID: 40224165 PMCID: PMC11984477 DOI: 10.1021/acs.macromol.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
The affinity of charged polymers for water is of central interest in polyelectrolyte science. Hydration controls the solution properties of polyelectrolytes as well as their performance in materials having a balance of positive and negative repeat units, such as polyelectrolyte complexes, PECs, and polyzwitterions, PZs. As with neutral polymers, a ranking of water affinity, loosely termed hydrophilicity, is often sought. Apart from the solubility in water, there are few methods for determining relative hydrophilicity. The scaling exponent of size with molecular weight provides, for polymers in general, a classical measure of solvent quality. In this work, using aqueous size exclusion chromatography coupled with static light scattering, the radius of gyration scaling with molecular weight was determined for a range of cationic and anionic polyelectrolytes and for some polyzwitterions. For a more definitive comparison of hydrophilicity, solution calorimetry was used to measure the enthalpy of solution, ΔH sol, when rigorously dried samples of these polymers were dissolved in aqueous 0.1 M NaCl. All polymers yielded strongly exothermic ΔH sol, which provided a ranking of hydrophilicity. The first four molecules of water appear to generate almost all of the heat. Methacryl versions of polymers were more hydrophilic, as ΔH sol was 3-5 kJ mol-1 more exothermic than the nonmethacryl polymer. Polyzwitterions were shown to be strongly hydrated, consistent with the proposed mechanisms for their antifouling properties, although water is not necessarily more strongly held for PZs compared to PEs.
Collapse
Affiliation(s)
- Nagham Abou Hamad
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| |
Collapse
|
2
|
Li N, Li L, Sun C, Fixler D, Xiao S, Zhou S. Anion-π Type Polymeric Nanoparticle Dispersants for Enhancing the Dispersion Stability of Organic Pigments in Water. Molecules 2025; 30:975. [PMID: 40076200 PMCID: PMC11901968 DOI: 10.3390/molecules30050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
High-performance water-based inkjet inks are critical for advancing inkjet printing technology. The performance of water-based inkjet inks depends largely on the dispersion stability of organic pigments. This imposes higher demands on the performance of polymeric dispersants. However, the relatively weak interaction between polymeric dispersants and organic pigments limits their performance in water-based inkjet inks. Consequently, it is crucial to seek dispersants that exhibit stronger interactions with pigments, alongside high performance, and universality. In this work, five types of polymeric nanoparticles (PNPs) with anion-π groups were synthesized via a simple emulsion polymerization method. Compared to traditional polymeric dispersants, anion-π type PNPs exhibited significant advantages including low viscosity, solvent resistance, and high temperature resistance. Stronger interactions, including salt-bridge hydrogen bondings (H-bonds) and π-π interactions, between these PNPs and different types of organic pigments were demonstrated by FTIR, UV-Vis, and XPS spectral tests. In particular, PNPs-5, bearing -PhSO3- groups, exhibited the strongest interaction with the organic pigments. The water-based inkjet inks, formulated with PNPs-5 serving as a dispersant, exhibited remarkable dispersion stability and outstanding weatherability. This work rationally constructs a strategy for preparing universally applicable polymeric dispersants to enhance the dispersion of pigments in water-based inkjet inks, thereby presenting a broader perspective for applications in the field of inkjet printing.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghua Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (N.L.)
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shizhuo Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (N.L.)
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (N.L.)
| |
Collapse
|
3
|
Dasaro SR, Singh A, Vlachos P, Ristroph KD. Mechanistic insights into how mixing factors govern polyelectrolyte-surfactant complexation in RNA lipid nanoparticle formulation. J Colloid Interface Sci 2025; 678:98-107. [PMID: 39182390 DOI: 10.1016/j.jcis.2024.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
HYPOTHESIS Lipid nanoparticle self-assembly is a complex process that relies on ion pairing between nucleic acids and hydrophobic cationic lipid counterions for encapsulation. The chemical factors influencing this process, such as formulation composition, have been the focus of recent research. However, the physical factors, particularly the mixing protocol, which directly modulates these chemical factors, have yet to be mechanistically examined using a reproducible mixing platform comparable to the industry standard. We here utilize Flash NanoPrecipitation (FNP), a scalable rapid mixing platform, to isolate and systematically investigate how mixing factors influence this complexation step, first by using a model polyelectrolyte-surfactant system and then generalizing to a typical RNA lipid nanoparticle formulation. EXPERIMENTS Aqueous polystyrene sulfonate (PSS) and cetrimonium bromide (CTAB) solutions are rapidly homogenized using reproducible FNP mixing and controlled flow rates at different stoichiometric ratios and total solids concentrations to form polyelectrolyte-surfactant complexes (PESCs). Then, key mixing factors such as total flow rate, inlet stream relative volumetric flow rate, and magnitude of flow fluctuation are studied using both this PESC system and an RNA lipid nanoparticle formulation. FINDINGS Fluctuations in flow as low as ± 5 % of the total flow rate are found to severely compromise PESC formation. This result is replicated in the RNA lipid nanoparticle system, which exhibited significant differences in size (132.7 nm vs. 75.6 nm) and RNA encapsulation efficiency (34.0 % vs. 82.8 %) under fluctuating vs. steady flow. We explain these results in light of the chemical variables isolated and studied; slow or nonuniform mixing generates localized concentration gradients that disrupt the balance between the hydrophobic and electrostatic forces that drive complex formation. These experiments contribute to our understanding of the complexation stage of lipid nanoparticle formation and provide practical insights into the importance of developing controlled mixing protocols in industry.
Collapse
Affiliation(s)
- Sophia R Dasaro
- Department of Agricultural and Biological Engineering, Purdue University, 225 S. University St., West Lafayette, IN 47907, USA
| | - Abhishek Singh
- Department of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Pavlos Vlachos
- Department of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Kurt D Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 225 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Zhang G, Liu R, Zhang W, Zhang K, Zhu J, Zhang C. Poly(sodium styrene sulfonate)-Grafted SiO 2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry. Polymers (Basel) 2024; 17:21. [PMID: 39795424 PMCID: PMC11722859 DOI: 10.3390/polym17010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)-grafted SiO2 nanoparticle (SiO2-g-PSSNa). SiO2-g-PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO2-g-PSSNa with the desired structure was successfully obtained. Afterwards, the performance of SiO2-g-PSSNa as a dispersant in CWS preparation was evaluated. The results indicated that the optimal dosage of SiO2-g-PSSNa was 0.3%. Compared to the famous commercial products, PSSNa and lignosulfonate (LS), SiO2-g-PSSNa exhibits improved viscosity reduction performance. When SiO2-g-PSSNa was used as the dispersant, the maximum coal loading of CWS was 64.2%, which was higher than LS (63.4%) and PSSNa (63.9%). All CWSs obtained in this study were pseudoplastic fluids and more consistent with the Herschel-Bulkley rheological model. The turbiscan stability index (TSI) of CWS prepared with SiO2-g-PSSNa was 0.05, which was significantly lower than CWSs obtained from PSSNa (0.30) and LS (0.36). Therefore, SiO2-g-PSSNa also exhibits excellent stability performance. This result was confirmed by rod penetration tests. The underlying mechanism was also clarified by various measurements, such as contact angle, zeta potential, EDS and low-field nuclear magnetic resonance spectra (low-field NMR). The results reveal that SiO2-g-PSSNa can adsorbed onto the coal surface. SiO2-g-PSSNa possesses a special branched structure, which bears a higher charge density as compared to linear ones with approximate chemical composition. As a result, coal particles adsorbed with SiO2-g-PSSNa exhibit more electronegativity. With the enhancement of the electrostatic repulsive between coal particles, the apparent viscosity was lowered and the static stability was improved. This study demonstrated that solubility in water is not an essential factor in engineering the dispersant. Densely charged groups are probably more important.
Collapse
Affiliation(s)
- Guanghua Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (R.L.); (K.Z.); (J.Z.)
| | - Ruijun Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (R.L.); (K.Z.); (J.Z.)
| | - Wanbin Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Kangmin Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (R.L.); (K.Z.); (J.Z.)
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (R.L.); (K.Z.); (J.Z.)
| | - Ce Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (R.L.); (K.Z.); (J.Z.)
| |
Collapse
|
5
|
Caliari AB, Bicev RN, da Silva CC, de Souza SEG, da Silva MG, Souza LEA, de Mello LR, Hamley IW, Motta G, Degrouard J, Tresset G, Quaresma AJC, Nakaie CR, da Silva ER. Self-assembly, cytocompatibility, and interactions of desmopressin with sodium polystyrene sulfonate. SOFT MATTER 2024; 20:9597-9613. [PMID: 39584497 DOI: 10.1039/d4sm01125b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Peptide-polymer systems hold strong potential for applications in nanotherapeutics. Desmopressin, a synthetic analogue of the antidiuretic hormone arginine vasopressin, may serve as a valuable case of study in this context since it is a first-line treatment for disorders affecting water homeostasis, including diabetes insipidus. It also has an established use as a hemostatic agent in von Willebrand disease, and recently, its repurposing has been suggested as a neoadjuvant in the treatment of certain types of cancer. Despite its well-documented clinical uses, studies on the supramolecular organization of desmopressin and its association with polymers remain scarce, limiting the therapeutic benefits of these nanostructured arrays. Here, we investigate the self-assembly of desmopressin and its association with sodium polystyrene sulphonate (NaPSS), a potassium-binding polymer used to treat hyperkalemia. Using structural techniques such as small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and atomic force microscopy combined with infrared nanospectroscopy (AFM-IR), we identified that desmopressin associates with NaPSS to form hybrid fibrillar nanoassemblies characterized by β-turn enriched domains and the appearance of β-sheet content. In vitro cytotoxicity assays conducted on breast cancer cell lines MCF-7 and MDA-MB-231 showed that NaPSS/desmopressin complexes are well-tolerated by the non-metastatic MCF-7 cells while displaying inhibitory effects against the metastatic MDA-MB-231 cells. The findings presented here, which demonstrate the successful association between two clinically validated drugs and the ability of the hybrid matrix to modulate cell interactions, potentially contribute to the design of peptide-polymer therapeutic systems.
Collapse
Affiliation(s)
- Ana B Caliari
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Renata N Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Caroline C da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Sinval E G de Souza
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Marta G da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Louise E A Souza
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | - Guacyara Motta
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Alexandre J C Quaresma
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Clovis R Nakaie
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| |
Collapse
|
6
|
Shim W, Heo J, Lee J, Kappl M, Butt HJ, Wooh S. Surface-Templated Polymer Microparticle Synthesis Based on Droplet Microarrays. Macromol Rapid Commun 2024; 45:e2400521. [PMID: 39116429 DOI: 10.1002/marc.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Polymer microparticle synthesis based on the surface-templated method is a simple and environmentally friendly method to produce various microparticles. Unique particles with different compositions can be fabricated by simply annealing a polymer on a liquid-repellent surface. However, there are hurdles to producing particles of homogeneous sizes with large quantities and varying the shape of particles. Here, a new approach to synthesizing multiple polymer microparticles using micropatterns with wettability contrast is presented. Polymer microparticles are formed in two steps. First, a layer of poly(sodium-4-styrenesulfonate) is deposited on the hydrophilic regions by dipping and withdrawing this micropattern from a polymer solution, and an array of microdroplets is formed. A dewetting-inducing layer on the pattern is introduced, and then target polymer patches are sequentially generated on it. By annealing over Tg, the contact line of the target polymer patch is freely receded, creating a particle form. The size and shape of the microparticle can be controlled by varying the micropatterns. In addition, it is demonstrated that microparticles made of polymer blends or polymer/nanoparticle composite are easily produced. This versatile method offers the potential of surface-templated synthesis to tailor polymer microparticles with different sizes, shapes, and functionalities in various research and applications.
Collapse
Affiliation(s)
- Wonmi Shim
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jeongbin Heo
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jaeseung Lee
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Sanghyuk Wooh
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
7
|
Ziółkowska D, Shyichuk A, Shyychuk I. Narrow Range of Coagulation of Ion Associates of Poly(styrene sulfonate) with Alcian Blue Dye. Molecules 2024; 29:4017. [PMID: 39274865 PMCID: PMC11396345 DOI: 10.3390/molecules29174017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The ionic association of Alcian Blue dye with poly(styrene sulfonate) in aqueous solutions was studied for analytical purposes. The quadruple-charged cationic dye, Alcian Blue, was found to form colloidal ionic associates with poly(styrene sulfonate) anions. When the amounts of opposite charges are nearly equal, the resulting ionic associates lose solubility and coagulate rapidly. This effect occurs within a narrow range of the ratio of poly(styrene sulfonate) to Alcian Blue. At the point of charge equivalence, the zeta potential of the resulting particles is zero, which facilitates flocculation. The resulting flocs enlarge to approximately 0.05-0.5 mm and precipitate rapidly. FTIR spectroscopy confirms that the precipitate contains both poly(styrene sulfonate) and Alcian Blue dye. Sedimentation kinetics was studied in detail using scanning turbidimetry. Due to the high molar absorbance of the Alcian Blue dye at 600 nm, the point of equimolar charge ratio was precisely determined by spectrophotometry. The complete precipitation of ionic associates occurs when the amount of poly(styrene sulfonate) ranges from 1.4 to 1.55 mmol per 1 g of Alcian Blue dye. Such a narrow coagulation range allows for the use of the studied effect for quantitative analysis. Both Alcian Blue dye and poly(styrene sulfonate) can be quantified if one of their concentrations is known.
Collapse
Affiliation(s)
- Dorota Ziółkowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Alexander Shyichuk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Iryna Shyychuk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
8
|
Penfold J, Thomas RK. The Gibbs and Butler Equations and the Surface Activity of Dilute Aqueous Solutions of Strong and Weak Linear Polyelectrolyte-Surfactant Mixtures: The Roles of Surface Composition and Polydispersity. J Phys Chem B 2024; 128:8084-8102. [PMID: 39140373 PMCID: PMC11345831 DOI: 10.1021/acs.jpcb.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In a previous paper, we applied a combination of direct measurements of both surface tension and surface excess in conjunction with the Gibbs equation to explain features of the adsorption and surface tension of mixtures of surfactants and strong linear polyelectrolytes at the air-water interface. This paper extends that model by including (i) the restrictions of the Butler equation for the behavior of the surface tension of mixed systems and (ii) the surface behavior of surfactant and linear weak polyelectrolyte mixtures, for which the inclusion of measurements of the surface excess and composition is shown to be particularly important. In addition, a closer examination of earlier data at higher concentrations provides evidence that the surface layering that is often observed in polyelectrolyte-surfactant systems is also an average equilibrium phenomenon and is driven by particular aggregation patterns that occur in some systems and not in others. Although the successful application of the Gibbs and Butler equations indicates that strong polyelectrolyte-surfactant systems can be described in terms of an average equilibrium over wide ranges of concentration, we have identified two concentration ranges where polydispersity in either polyelectrolyte molecular weight or composition results in significant time dependence of the surface behavior.
Collapse
Affiliation(s)
- Jeffrey Penfold
- Rutherford-Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
9
|
Munir M, Subechi M, Nurmanjaya A, Prasetya KE, Rindiyantono F, Chairuman, Pratama C, Yanto, Pujiyanto A, Setiawan H, Sarwono DA, Sarmini E, Fara ME, Suseno H. Development of a polystyrene-based microplastic model for bioaccumulation and biodistribution study using radiotracing and nuclear analysis method. MARINE POLLUTION BULLETIN 2024; 201:116283. [PMID: 38522338 DOI: 10.1016/j.marpolbul.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The investigation of micro or nano plastics behavior in the environment is essential to minimize the hazards of such pollutants on humans. While the conventional method requires sophisticated procedures and a lot of animal subjects, the nuclear technique confers a sensitive, accurate, and real-time method using radiolabeled micro or nano plastics as a tracer. In this study, polystyrene sulfonate-based microplastic (PSM) was developed with a size of around 3.6 μm, followed by radiolabeling with iodine-131 (131I) or zinc-65 (65Zn) for microplastic radiotracer model. After a stability study in seawater, phosphate buffer saline (PBS), and human serum albumin (HSA) for fifteen days, PSM-131I remained stable (>90 %), except in HSA (50-60 % after day-9), while PSM-65Zn was unstable (<50 %).
Collapse
Affiliation(s)
- Miftakul Munir
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia.
| | - Moch Subechi
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Ahid Nurmanjaya
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Kukuh Eka Prasetya
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Fernanto Rindiyantono
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Chairuman
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Chaidir Pratama
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia; Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| | - Yanto
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Anung Pujiyanto
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Daya Agung Sarwono
- Directorate of Nuclear Facility Management, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Endang Sarmini
- Directorate of Nuclear Facility Management, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Meita Eka Fara
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia; Aquatic Resources Management Master Program, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah 50275, Indonesia
| | - Heny Suseno
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| |
Collapse
|
10
|
G Lopez C, Matsumoto A, Shen AQ. Dilute polyelectrolyte solutions: recent progress and open questions. SOFT MATTER 2024; 20:2635-2687. [PMID: 38427030 DOI: 10.1039/d3sm00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are significantly different from those of electrically neutral polymers. The aim of this article is to highlight key results and some outstanding questions in the polyelectrolyte research from recent literature. We focus on the influence of electrostatics on conformational and hydrodynamic properties of polyelectrolyte chains. A compilation of experimental results from the literature reveals significant disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude this review by listing some key research challenges in order to fully understand the conformation and dynamics of polyelectrolytes in solutions.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
11
|
Wijesinghe S, Kosgallana C, Senanayake M, Mohottalalage SS, Zolnierczuk P, Stingaciu L, Grest GS, Perahia D. From ionic clusters dynamics to network constraints in ionic polymer solutions. Phys Rev E 2024; 109:034501. [PMID: 38632780 DOI: 10.1103/physreve.109.034501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.
Collapse
Affiliation(s)
- Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Chemistry, Appalachian State University, Boone, North Carolina 26808, USA
| | | | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laura Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, USA
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Physics, Clemson University, Clemson, South Carolina 29631, USA
| |
Collapse
|
12
|
Clobes ML, Kozliak EI, Kubátová A. Advancing Molecular Weight Determination of Lignin by Multi-Angle Light Scattering. Polymers (Basel) 2024; 16:477. [PMID: 38399853 PMCID: PMC10892000 DOI: 10.3390/polym16040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Due to the complexity and recalcitrance of lignin, its chemical characterization is a key factor preventing the valorization of this abundant material. Multi-angle light scattering (MALS) is becoming a sought-after technique for absolute molecular weight (MW) determination of polymers and proteins. Lignin is a suitable candidate for MW determination via MALS, yet further investigation is required to confirm its absolute MW values and molecular size. Studies aiming to break down lignin into a variety of renewable products will benefit greatly from a simple and reliable determination method like MALS. Recent pioneering studies, discussed in this review, addressed several key challenges in lignin's MW characterization. Nevertheless, some lignin-specific issues still need to be considered for in-depth characterization. This study explores how MALS instrumentation manages the complexities of determining lignin's MW, e.g., with simultaneous fractionation and fluorescence interference mitigation. Additionally, we rationalize the importance of a more detailed light scattering analysis for lignin characterization, including aspects like the second virial coefficient and radius of gyration.
Collapse
Affiliation(s)
| | - Evguenii I. Kozliak
- Department of Chemistry, University of North Dakota, 151 Cornell St., Stop 9024, Grand Forks, ND 58202, USA;
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, 151 Cornell St., Stop 9024, Grand Forks, ND 58202, USA;
| |
Collapse
|
13
|
Gulati A, Jacobs M, Lopez CG, Dobrynin AV. Salt Effect on the Viscosity of Semidilute Polyelectrolyte Solutions: Sodium Polystyrenesulfonate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Anish Gulati
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Michael Jacobs
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Carlos G. Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
14
|
Fraser AC, Yankey J, Coronell O, Dingemans TJ. A Sulfonated All-Aromatic Polyamide for Heavy Metal Capture: A Model Study with Pb(II). ACS APPLIED POLYMER MATERIALS 2023; 5:856-865. [PMID: 38144907 PMCID: PMC10735244 DOI: 10.1021/acsapm.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Polyelectrolytes are widely used in heavy metal removal, finding applications as coagulants and flocculants. We compare the heavy metal removal capability of a water-soluble sulfonated semirigid polyamide, poly(2,2'-disulfonyl-4,4'-benzidine isophthalamide) (PBDI), with that of a well-known random-coil polymer, poly(sodium 4-styrenesulfonate) (PSS). Using lead (Pb(II)) as a model contaminant, both polymers precipitate out from solution at ~500 mg/L Pb(II) in water. The ability to remove Pb(II) from water was quantified using adsorption isotherms and fitted with Langmuir and Freundlich adsorption models. The sorption of Pb(II) by PSS fit the Langmuir model with a high degree of correlation (0.976 R2), but the sorption of Pb(II) by PBDI could not be accurately predicted using the Langmuir or Freundlich model. The sorption of Pb(II) by PBDI and PSS was compared by normalizing sorption by the number of sulfonate groups of each polymer and the ion exchange capacity (IEC), found by titration. We find that PBDI removes a greater amount of Pb(II) per gram of sorbent compared to PSS, 410 mg/g vs 260 mg/g, respectively, which cannot be accounted for by differences in IEC or number of sulfonate groups. Our findings confirm that the positioning of the sulfonate groups and the rigidity of the polymer backbone play an important role in how Pb(II) coordinates to the polymer prior to precipitating out from solution.
Collapse
Affiliation(s)
- Anna C Fraser
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| | - Jacob Yankey
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States
| | - Theo J Dingemans
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| |
Collapse
|
15
|
Haque Mizan MM, Rastgar M, Aktij SA, Asad A, Karami P, Rahimpour A, Sadrzadeh M. Organic solvent-free polyelectrolyte complex membrane preparation: Effect of monomer mixing ratio and casting solution temperature. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Synthesis, Characterizations, and Thermochromic Properties of VO2 Particles Grafted with PSS : PEDOT. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/1866280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vanadium dioxide (VO2) particles were modified by grafting with poly(styrene sulfonate) (PSS) and poly(3,4-ethylenedioxythiophene) (PEDOT) via surface-initiated atom transfer radical polymerization (SI-ATRP). Critical transition temperature (
) of the modified VO2 ranging between 77 and 79°C was obtained. After mixing with acrylic-based emulsion, dispersion of the VO2 particles in the polymer matrix was significantly improved. The visible light transmittance through the composite films above 75% was maintained if a concentration of the modified VO2 particles loaded into acrylic polymer film was no greater than 1.0 wt%. The NIR transmittance through the acrylic/VO2@PSS : PEDOT also dropped by 9-10%, compared with that of the pure acrylic film (without any particles). Finally, glass substrates coated with the acrylic/VO2@PSS : PEDOT composite films could reduce the temperature inside a model house by 5-6°C, compared with that of the control system (pure acrylic coating film without VO2 particles). Overall, this work demonstrated that it was possible to improve the dispersion of VO2 particles in polymer films without sacrificing its NIR shielding ability by grafting the surface of VO2 particles with PSS : PEDOT chains, while providing the optimum grafting density and particle loading.
Collapse
|
17
|
Complexation in Aqueous Solution of a Hydrophobic Polyanion (PSSNa) Bearing Different Charge Densities with a Hydrophilic Polycation (PDADMAC). Polymers (Basel) 2022; 14:polym14122404. [PMID: 35745980 PMCID: PMC9229680 DOI: 10.3390/polym14122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this work the electrostatic complexation of two strong polyelectrolytes (PEs) was studied, the hydrophilic and positively charged poly (diallyldimethylammonium chloride) (PDADMAC) and the hydrophobic and negatively charged poly (styrene-co-sodium styrene sulfonate) (P(St-co-SSNa)), which was prepared at different sulfonation rates. The latter is known to adopt a pearl necklace conformation in solution for intermediate sulfonation rates, suggesting that a fraction of the P(St-co-SSNa) charges might be trapped in these hydrophobic domains; thus making them unavailable for complexation. The set of complementary techniques (DLS, zetametry, ITC, binding experiment with a cationic and metachromatic dye) used in this work highlighted that this was not the case and that all anionic charges of P(St-co-SSNa) were in fact available for complexation either with the polycationic PDADMAC or the monocationic o-toluidine blue dye. Only minor differences were observed between these techniques, consistently showing a complexation stoichiometry close to 1:1 at the charge equivalence for the different P(St-co-SSNa) compositions. A key result emphasizing that (i) the strength of the electrostatic interaction overcomes the hydrophobic effect responsible for pearl formation, and (ii) the efficiency of complexation does not depend significantly on differences in charge density between PDADMAC and P(St-co-SSNa), highlighting that PE chains can undergo conformational rearrangements favoring the juxtaposition of segments of opposite charge. Finally, these data have shown that the formation of colloidal PECs, such as PDADMAC and P(St-co-SSNa), occurs in two distinct steps with the formation of small primary complex particles (<50 nm) by pairing of opposite charges (exothermic step) followed by their aggregation within finite-size clusters (endothermic step). This observation is in agreement with the previously described mechanism of PEC particle formation from strongly interacting systems containing a hydrophobic PE.
Collapse
|