1
|
Ma R, Chang Y, Chen Q, Li J, Qiao B. Precise PBAEs: A Highly Efficient Single-Molecularly Defined Gene-Delivery System. Angew Chem Int Ed Engl 2025; 64:e202422134. [PMID: 40040418 DOI: 10.1002/anie.202422134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
Gene-delivery polymers have wide therapeutic applications. The structures (e.g., molecular weight, polymer sequence, end groups, and topology) of gene-delivery polymers are of crucial importance to their properties including transfection efficiency, toxicity, and targeting capability. Thus, precise control over the structures of gene-delivery polymers is extremely beneficial for property optimizations and manufacturing reproducibility. However, sequence-defined gene-delivery polymers with high efficiency and low toxicity are rare, limited by synthetic strategies. In this work, we developed a method that enables poly(β-amino esters), one of the most promising gene-delivery polymers, to be synthesized with precisely controlled and vastly variable molecular weight, end group, and topology. This synthetic strategy creates a new family of gene-delivery polymers with defined structures, offering significant potentials and revealing new design principles.
Collapse
Affiliation(s)
- Rong Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Chang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Qimingxing Chen
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Huang X, Liang Z, Yang X, Piao M, Huang Z, Zhang Z. Multilevel Anti-counterfeiting Barcode with Enhanced Information Encryption Based on Stimulus-Responsive Digital Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43075-43082. [PMID: 39016017 DOI: 10.1021/acsami.4c08408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In response to the escalating challenges of counterfeiting due to technological and socioeconomic advancements, a novel trilevel anti-counterfeiting Quick Response (QR) code system has been developed. This system integrates digital polymers with QR code and stimulus-responsive chromophores, i.e., rhodamine B (RB), rhodamine 6G (R6G), and spiropyran (SP), to provide a sophisticated security solution. This advanced barcode remains concealed until specific stimuli reveal it and can be scanned by a smartphone, enabling first and second level anti-counterfeiting. For the third level of security, the encrypted information within the digital polymers can only be deciphered using tandem mass spectrometry. This innovative approach not only enhances security features but also offers reversible visibility and a complex verification process. This trilevel system surpasses traditional single-level anti-counterfeiting methods and holds significant potential for future applications in protecting brand authenticity and managing data storage, contributing new concepts and techniques to the field of high-security anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xiaoman Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhishan Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaojie Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Minghao Piao
- Collaborative Innovation Center of Novel Software Technology and Industrialization, School of Computer Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhihao Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Huang X, Yang Z, Yang X, Liang Z, Zhong Q, Hu L, Huang Z, Zhang Z. New Wine in Old Bottle: Crown Ether-Functionalized Digital Polymer toward Efficient MALDI-TOF MS/MS Decoding via a Classical Supramolecular Interaction. ACS Macro Lett 2024; 13:979-986. [PMID: 39042378 DOI: 10.1021/acsmacrolett.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Digital polymers (DPs), which serve as promising molecular-level storage media, have increasingly garnered interest. Their application significantly depends on the efficiency of the information writing (synthesis) and reading processes (sequencing). For reading, rational incorporation of weak bonds in the main chain was applied in most cases in order to improve readability of the tandem mass spectra (MS/MS), which would limit the chain length of DPs, thus reducing the information storage capacity. In this study, the introduction of commercially available crown ether (CE) at the terminus of digital oligo(γ-butyrolactone)s (DOBLs) significantly enhances the predictability and fidelity of matrix-assisted laser desorption/ionization time-of-flight tandem mass spectra (MALDI-TOF MS/MS), thus improving the decoding process. The use of crown ether, leveraging a well-established supramolecular interaction with alkali cations known since 1967, offers a strong affinity between ionization agents and CE motifs, to form a selective effect of the desired fragments during the tandem MS. This method is particularly effective for long-chain DPs, extending up to 32-mer, and allows for customizable fragmentation patterns. The incorporation of CE at the DP chain end presents a novel and efficient strategy for enhancing MS/MS readability and amplifying the information storage capacity of polymers.
Collapse
Affiliation(s)
- Xiaoman Huang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhilin Yang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
- Jiangsu Yangnong Chemical Group Co., Ltd., Yangzhou 225009, China
| | - Xiaojie Yang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhishan Liang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Qinmeng Zhong
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Lihua Hu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Zhihao Huang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Suzhou 215123, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Pashley-Johnson F, Munaweera R, Hossain SI, Gauci SC, Delafresnaye L, Frisch H, O'Mara ML, Du Prez FE, Barner-Kowollik C. How molecular architecture defines quantum yields. Nat Commun 2024; 15:6033. [PMID: 39019945 PMCID: PMC11255304 DOI: 10.1038/s41467-024-50366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Understanding the intricate relationship between molecular architecture and function underpins most challenges at the forefront of chemical innovation. Bond-forming reactions are particularly influenced by the topology of a chemical structure, both on small molecule scale and in larger macromolecular frameworks. Herein, we elucidate the impact that molecular architecture has on the photo-induced cyclisations of a series of monodisperse macromolecules with defined spacers between photodimerisable moieties, and examine the relationship between propensity for intramolecular cyclisation and intermolecular network formation. We demonstrate a goldilocks zone of maximum reactivity between the sterically hindered and entropically limited regimes with a quantum yield of intramolecular cyclisation that is nearly an order of magnitude higher than the lowest value. As a result of the molecular design of trifunctional macromolecules, their quantum yields can be deconvoluted into the formation of two different cyclic isomers, as rationalised with molecular dynamics simulations. Critically, we visualise our solution-based studies with light-based additive manufacturing. We formulate four photoresists for microprinting, revealing that the precise positioning of functional groups is critical for resist performance, with lower intramolecular quantum yields leading to higher-quality printing in most cases.
Collapse
Affiliation(s)
- Fred Pashley-Johnson
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia
| | - Sheikh I Hossain
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia
| | - Steven C Gauci
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Laura Delafresnaye
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
Lu D, Jia Z, Monteiro MJ. A Sequence-Defined ABC Dendritic Macromolecule with Amino Acid Peripheral Functionality via Iterative Chemoselective Reactions. Biomacromolecules 2024; 25:2007-2015. [PMID: 38349647 DOI: 10.1021/acs.biomac.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemoselective reactions allow near-precision control over the polymer composition and topology to create sequence-controlled polymers with similar secondary and tertiary structures to those found in proteins. Dendrimers are recognized as well-defined macromolecules with the potential to mimic protein surface functionality due to the large number of functional groups available at its periphery with the internal structure acting as the support scaffold. Transitioning from using small-molecule dendrimers to dendritic macromolecules will not only allow retention of the high peripheral functionality but also provide an internal scaffold with a desired polymer composition within each generational layer. Here, we exemplify a systematic approach to creating a dendritic macromolecule with the placement of different polymer building blocks in precise locations within the internal structure and the placement of three different amino acid moieties clustered at the periphery. The synthesis of this ABC dendritic macromolecule was accomplished through iterative chemoselective reactions.
Collapse
Affiliation(s)
- Derong Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Wang X, Yu Z, Huang Z, Zhou N, Cheng X, Zhang Z, Zhang W, Zhu X. Unraveling Dynamic Helicity Inversion and Chirality Transfer through the Synthesis of Discrete Azobenzene Oligomers by an Iterative Exponential Growth Strategy. Angew Chem Int Ed Engl 2023:e202315686. [PMID: 38085492 DOI: 10.1002/anie.202315686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.
Collapse
Affiliation(s)
- Xiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Xie J, Shi AC. Phase Behavior of Binary Blends of Diblock Copolymers: Progress and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11491-11509. [PMID: 37535849 DOI: 10.1021/acs.langmuir.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The phase behavior of binary blends of diblock copolymers has been examined extensively in the past decades. Experimental and theoretical studies have demonstrated that mixing two different block copolymers provides an efficient and versatile route to regulate their self-assembled morphologies. A good understanding of the principles governing the self-assembly of block copolymer blends has been obtained from the study of A1B1/A2B2 diblock copolymer blends. The second (A2B2) diblocks could act synergistically as fillers and cosurfactants to regulate the domain size and interfacial properties, resulting in the formation of ordered phases not found in the parent (A1B1 or A2B2) diblock copolymer melts. The study of A1B1/A2B2 block copolymer blends further provides a solid foundation for future research on more complex block copolymer blends.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
8
|
Zhou D, Xu M, Gan Z, Yan XY, Ma Z, Zheng J, Dong XH. Discrete Diblock Copolymers with Precise Stereoconfiguration. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Ren X, Guo C, Li X, Wu Y, Zhang Y, Li S, Zhang K. Protecting-Group-Free Iterative Divergent/Convergent Method for Preparing Sequence-Defined Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiangzhu Ren
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjuan Guo
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xijuan Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yu Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shumu Li
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Gan Z, Zhou D, Ma Z, Xu M, Xu Z, He J, Zhou J, Dong XH. Local Chain Feature Mandated Self-Assembly of Block Copolymers. J Am Chem Soc 2023; 145:487-497. [PMID: 36572645 DOI: 10.1021/jacs.2c10761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work demonstrates an effective and robust approach to regulate phase behaviors of a block copolymer by programming local features into otherwise homogeneous linear chains. A library of sequence-defined, isomeric block copolymers with globally the same composition but locally different side chain patterns were elaborately designed and prepared through an iterative convergent growth method. The precise chemical structure and uniform chain length rule out all inherent molecular defects associated with statistical distribution. The local features are found to exert surprisingly pronounced impacts on the self-assembly process, which have yet to be well recognized. While other molecular parameters remain essentially the same, simply rearranging a few methylene units among the alkyl side chains leads to strikingly different phase behaviors, bringing about (i) a rich diversity of nanostructures across hexagonally packed cylinders, Frank-Kasper A15 phase, Frank-Kasper σ phase, dodecagonal quasicrystals, and disordered state; (ii) a significant change of lattice dimension; and (iii) a substantial shift of order-to-disorder transition temperature (up to 40 °C). Different from the commonly observed enthalpy-dominated cases, the frustration due to the divergence between the native molecular geometry originating from side chain distribution and the local packing environment mandated by lattice symmetry is believed to play a pivotal role. Engineering the local chain feature introduces another level of structural complexity, opening up a new and effective pathway for modulating phase transition without changing the chemistry or composition.
Collapse
Affiliation(s)
- Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuoqi Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawen He
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Kim D, Lee JM, Song J, Lee SW, Lee HG, Kim KT. Synthesis of Enantiomeric ω-Substituted Hydroxy Acids from Terminal Epoxides and Alkenes: Functional Building Blocks for Discrete and Sequence-Defined Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dogyun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeong Min Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeongeun Song
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seul Woo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Wang C, Wu Y, Zhu Y, Ma H, Zhang M, Liu G, He J, Ni P. Investigation of eight-arm tapered star copolymers prepared by anionic copolymerization and coupling reaction. Polym Chem 2022. [DOI: 10.1039/d2py00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of eight-arm tapered star copolymers 8[P(I-co-S)x]-POSS were synthesized by the coupling reaction between octavinyl POSS and the tapered living copolymer chains obtained from statistical anionic copolymerization.
Collapse
Affiliation(s)
- Chengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yibo Wu
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Yihui Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongbing Ma
- Testing and Analysis Center, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - GengXin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|