1
|
Yamamoto S, Kindaichi S, Matsubara R, Kubono A, Giridharagopal R, Ginger DS, Mitsuishi M. Organic Electrochemical Transistors Based on Blend Films with Thermoresponsive Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501927. [PMID: 40346972 DOI: 10.1002/smll.202501927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Indexed: 05/12/2025]
Abstract
Organic electrochemical transistors (OECTs) are biocompatible devices with significant potential for biosensing. Functionalizing the channel layers is essential for improving the selectivity and sensitivity of OECT-based biosensors. A straightforward one-step fabrication method for these functionalized channel layers can simplify the production process for these devices. This study developed OECT devices based on a polymer blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and poly(N-isopropylacrylamide) (PNIPAM) that respond to temperature changes. Structural analyses of the blended films showed that hole transport through PEDOT is maintained even after blending, and the PNIPAM is segregated at the surface. To overcome the large chain conformational change that occurs with temperature changes, a flexible poly(ethylene glycol) diglycidyl ether (PEGDE) crosslinker is used in addition to the conventional crosslinker, (3-glycidyloxypropyl)trimethoxysilane (GOPS). As a result, the PEGDE + GOPS binary crosslinker system exhibited reversible responses to temperature cycling. These results highlight two key considerations when designing a functional mixed-conductor film based on a polymer blend system: (1) vertical phase separation and (2) proper crosslinker selection.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shuhei Kindaichi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Ryosuke Matsubara
- Department of Electronics and Materials Science, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Atsushi Kubono
- Department of Electronics and Materials Science, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
2
|
Qian X, Qiu J, Hu B, Yao J, Zuo M, Wu Z, Shan G, Song Y, Zheng Q, Peng B, Li H, Du M. Metal-Like Conductivity in Acid-Treated PEDOT:PSS Films: Surpassing 15,000 S/Cm. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17164-17178. [PMID: 40051041 DOI: 10.1021/acsami.4c19958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Although poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films with high conductivity have been obtained through conventional organic solvent and acid treatment, their conductivity has not yet exceeded 10000 S/cm. In this paper, by combining blade-coating and treating with high concentration and volatilizable trifluoromethanesulfonic acid (CF3SO3H), PEDOT:PSS films with ultrahigh conductivity of 15143 S/cm, comparable to some metals, were prepared. Characterizations of morphology and structure indicate the formation of a perfectly continuous fibrous network structure, highly oriented crystallization, and tightly packed π-π stacking of PEDOT chains after removing a vast amount of PSS, which contributes to boosting the electrical conductivity of the treated PEDOT:PSS film. The distinguished electrical properties and ultrahigh conductivity enable it to replace metal materials as electrodes for "all-polymer" capacitive piezoelectric sensors with outstanding pressure sensitivity. Moreover, by regulating the blade-coating condition, the CF3SO3H-treated PEDOT:PSS films exhibit excellent electrochemical performance, which is an ideal channel material in organic electrochemical transistors (OECTs). The CF3SO3H-treated PEDOT:PSS film-based OECT devices display a high transconductance of 50.6 ± 5.5 mS and carrier mobility of 9.3 ± 1.5 cm2V-1s-1. This study not only provides new insights into the development of a simple and efficient PEDOT:PSS film treatment method but also expands its application in flexible electronics. Especially, the present research offers a useful reference in preparing "all-polymer"-based flexible electronic devices.
Collapse
Affiliation(s)
- Xinyuan Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiahuan Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bin Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Junxian Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Boyu Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
3
|
Doshi S, Ji A, Mahdi AI, Keene ST, Selvin SP, Lalanne P, Appel EA, Melosh NA, Brongersma ML. Electrochemically mutable soft metasurfaces. NATURE MATERIALS 2025; 24:205-211. [PMID: 39537748 DOI: 10.1038/s41563-024-02042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Active optical metasurfaces, capable of dynamically manipulating light in ultrathin form factors, enable novel interfaces between humans and technology. In such interfaces, soft materials bring many advantages based on their flexibility, compliance and large stimulus-driven responses. Here, we create electrochemically mutable, soft metasurfaces that capitalize on the swelling of soft conducting polymers to alter the shape and associated resonant response of metasurface elements. Such geometric tuning overcomes the typical trade-off between achieving substantial tuning and low optical loss that is intrinsic to dynamic metasurfaces relying on index tuning of materials. Using the commercial polymer PEDOT:PSS, we demonstrate dynamic, high-resolution colour tuning and high-diffraction-efficiency (>19%) beam-steering devices that operate at CMOS-compatible voltages (~1.5 V). These results highlight how the deformability of soft materials can enable a class of high-performance metasurfaces that are suitable for body-worn technologies.
Collapse
Affiliation(s)
- Siddharth Doshi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Anqi Ji
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Ali I Mahdi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Scott T Keene
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Skyler P Selvin
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | | | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Huang X, Kaissner R, Renz B, Börner J, Ou X, Neubrech F, Zhang Y, Hu Y, Liu N. Organic Metasurfaces with Contrasting Conducting Polymers. NANO LETTERS 2025; 25:890-897. [PMID: 39757923 DOI: 10.1021/acs.nanolett.4c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies. Sequential electrochemical polymerizations locally conjugate subwavelength-thin layers of PANI and PEDOT onto preselected gold nanorods, creating electro-plasmonic antennas with distinct optoelectronic properties. This dual-polymer approach enables dynamic metasurface pixel control without individual electrode routing, thereby simplifying active metasurface designs. The metasurfaces exhibit dual-channel functions, including anomalous transmission and holography, through the redox-state switching of both polymers. Our work underscores the potential of conducting polymers for active metasurface applications, offering a pathway to advanced reconfigurable optical devices at visible frequencies.
Collapse
Affiliation(s)
- Xiangyu Huang
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Robin Kaissner
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Benjamin Renz
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Janine Börner
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Xiangnian Ou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Frank Neubrech
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Na Liu
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Desbiolles B, Hanna J, Ausilio R, Leccardi MA, Yu Y, Sarkar D. Organic electro-scattering antenna: Wireless and multisite probing of electrical potentials with high spatial resolution. SCIENCE ADVANCES 2024; 10:eadr8380. [PMID: 39705344 DOI: 10.1126/sciadv.adr8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Monitoring electrical potentials with high recording site density and micrometer spatial resolution in liquid is critical in biosensing. Organic electronic materials have driven remarkable advances in the field because of their unique material properties, yet limitations in spatial resolution and recording density remain. Here, we introduce organic electro-scattering antennas (OCEANs) for wireless, light-based probing of electrical signals with micrometer spatial resolution, potentially from thousands of sites. The technology relies on the unique dependence of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate light scattering properties to its doping level. Electro-optic characteristics of individual antennas varying in diameters and operating voltages were systematically characterized in saline solution. Signal-to-noise ratios up to 48 were achieved in response to 100-mV stimuli, with 2.5-mV detection limits. OCEANs demonstrated millisecond time constants and exceptional long-term stability, enabling continuous recordings over 10 hours. By offering spatial resolution of 5 μm and a recording density of 4 × 106 cm-2, OCEANs unlock new readout capabilities, potentially accelerating fundamental and clinical research.
Collapse
Affiliation(s)
- Benoit Desbiolles
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jad Hanna
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Ausilio
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marta Airaghi Leccardi
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Deblina Sarkar
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Hou W, Han B, Wang C, Tang D, Chen Y, Ouyang M, Liu J, Zhang C. Fluoridation of D-A Ambipolar Polymers to Accelerate Ion Migration toward High-Performance Symmetric Dual-Ion Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51504-51511. [PMID: 39257245 DOI: 10.1021/acsami.4c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dual-ion electrochemical energy storage devices have attracted much attention due to their cost effectiveness and high operating voltage. Electrochemical properties such as the specific capacity of dual-ion energy storage devices are closely related to ion migration. However, the ion migration of dual-ion energy storage devices is slow, especially the cation migration, resulting in limited discharge capacity and poor rate performance. In this study, fluorinated and nonfluorinated ambipolar conductive polymers were prepared as electrode materials. The effects of fluorination on aggregation and solvent were studied as well as its role in improving ion migration. The results show that fluorination can increase the force of fluorination on the solvent, reduce the level of binding of the solvent to the ion, and regulate the aggregation state. Compared with the unfluorinated polymer of PEPOPE, the ion migration and electrochemical kinetics of PEPFEP were significantly improved, and the PEPFPE (71 F/cm3) has a higher negative specific capacity than PEPOPE (24 F/cm3) at a current density of 5 A/cm3.
Collapse
Affiliation(s)
- Weiwei Hou
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingbing Han
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chenze Wang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dianyu Tang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yusheng Chen
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mi Ouyang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Junlei Liu
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Doshi S, Ludescher D, Karst J, Floess M, Carlström J, Li B, Mintz Hemed N, Duh YS, Melosh NA, Hentschel M, Brongersma M, Giessen H. Direct electron beam patterning of electro-optically active PEDOT:PSS. NANOPHOTONICS 2024; 13:2271-2280. [PMID: 38774765 PMCID: PMC11104293 DOI: 10.1515/nanoph-2023-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2023] [Indexed: 05/24/2024]
Abstract
The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and -3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.
Collapse
Affiliation(s)
- Siddharth Doshi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Dominik Ludescher
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Julian Karst
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Moritz Floess
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Johan Carlström
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Bohan Li
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Yi-Shiou Duh
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Mark Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| |
Collapse
|
8
|
Ko JH, Seo DH, Jeong HH, Kim S, Song YM. Sub-1-Volt Electrically Programmable Optical Modulator Based on Active Tamm Plasmon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310556. [PMID: 38174820 DOI: 10.1002/adma.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Reconfigurable optical devices hold great promise for advancing high-density optical interconnects, photonic switching, and memory applications. While many optical modulators based on active materials have been demonstrated, it is challenging to achieve a high modulation depth with a low operation voltage in the near-infrared (NIR) range, which is a highly sought-after wavelength window for free-space communication and imaging applications. Here, electrically switchable Tamm plasmon coupled with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is introduced. The device allows for a high modulation depth across the entire NIR range by fully absorbing incident light even under epsilon near zero conditions. Optical modulation exceeding 88% is achieved using a CMOS-compatible voltage of ±1 V. This modulation is facilitated by precise electrical control of the charge carrier density through an electrochemical doping/dedoping process. Additionally, the potential applications of the device are extended for a non-volatile multi-memory state optical device, capable of rewritable optical memory storage and exhibiting long-term potentiation/depression properties with neuromorphic behavior.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dong Hyun Seo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science AND Technology, Gwangju, 61005, Republic of Korea
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3000, Australia
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science AND Technology, Gwangju, 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
9
|
Minenkov A, Hollweger S, Duchoslav J, Erdene-Ochir O, Weise M, Ermilova E, Hertwig A, Schiek M. Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9517-9531. [PMID: 38324480 PMCID: PMC10895603 DOI: 10.1021/acsami.3c17923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid-liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid-liquid interfaces and electrochemical activity.
Collapse
Affiliation(s)
- Alexey Minenkov
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface- and Nanoanalytics (ZONA), Johannes
Kepler University, A-4040 Linz, Austria
| | - Sophia Hollweger
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| | - Jiri Duchoslav
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface- and Nanoanalytics (ZONA), Johannes
Kepler University, A-4040 Linz, Austria
| | - Otgonbayar Erdene-Ochir
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| | - Matthias Weise
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Elena Ermilova
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Andreas Hertwig
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Manuela Schiek
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| |
Collapse
|
10
|
Paleti SHK, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C. Impact of doping on the mechanical properties of conjugated polymers. Chem Soc Rev 2024; 53:1702-1729. [PMID: 38265833 PMCID: PMC10876084 DOI: 10.1039/d3cs00833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/25/2024]
Abstract
Conjugated polymers exhibit a unique portfolio of electrical and electrochemical behavior, which - paired with the mechanical properties that are typical for macromolecules - make them intriguing candidates for a wide range of application areas from wearable electronics to bioelectronics. However, the degree of oxidation or reduction of the polymer can strongly impact the mechanical response and thus must be considered when designing flexible or stretchable devices. This tutorial review first explores how the chain architecture, processing as well as the resulting nano- and microstructure impact the rheological and mechanical properties. In addition, different methods for the mechanical characterization of thin films and bulk materials such as fibers are summarized. Then, the review discusses how chemical and electrochemical doping alter the mechanical properties in terms of stiffness and ductility. Finally, the mechanical response of (doped) conjugated polymers is discussed in the context of (1) organic photovoltaics, representing thin-film devices with a relatively low charge-carrier density, (2) organic thermoelectrics, where chemical doping is used to realize thin films or bulk materials with a high doping level, and (3) organic electrochemical transistors, where electrochemical doping allows high charge-carrier densities to be reached, albeit accompanied by significant swelling. In the future, chemical and electrochemical doping may not only allow modulation and optimization of the electrical and electrochemical behavior of conjugated polymers, but also facilitate the design of materials with a tunable mechanical response.
Collapse
Affiliation(s)
- Sri Harish Kumar Paleti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Shuichi Haraguchi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|
11
|
Tan P, Ren D, Han Y. Full-Color-Adjustable Nanophotonic Device Adopting Electrochromic Poly(3,4-ethylenedioxythiophene) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2614-2623. [PMID: 38178791 DOI: 10.1021/acsami.3c14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Intercalation-based organic polymers that shift their colors during ion insertion and extraction provide a significant basis for existing electrochromic technology. Nevertheless, the complexity of modifying the structure in the skeleton or combining several diverse polymers to produce a full-color range has restricted the practical applications of electrochromic materials. Herein, we demonstrate two configurations of the poly(3,4-ethylenedioxythiophene) (PEDOT) Fabry-Perot (F-P) nanocavity-type electrochromic devices fabricated by spray coating lossless PEDOT on the F-P metasurfaces (Cr/ITO/Ag/Cr), which allows full-color response by simply controlling the thickness of dielectric layer indium tin oxide (ITO). However, the reflected light from the PEDOT F-P nanocavity-type electrode can be modulated by electrically controllable optical absorption of PEDOT. Besides, the subtle brightness regulation could be obtained in our F-P nanocavity electrochromic devices via altering the PEDOT thickness. Overall, our results offer a novel perspective for versatile color control of PEDOT.
Collapse
Affiliation(s)
- Peiyu Tan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Dengfeng Ren
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yuge Han
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
12
|
Volkov AI, Apraksin RV. Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity? Polymers (Basel) 2023; 15:polym15112468. [PMID: 37299268 DOI: 10.3390/polym15112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Poly-3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) is a widely used conducting polymer with versatile applications in organic electronics. The addition of various salts during the preparation of PEDOT:PSS films can significantly influence their electrochemical properties. In this study, we systematically investigated the effects of different salt additives on the electrochemical properties, morphology, and structure of PEDOT:PSS films using a variety of experimental techniques, including cyclic voltammetry, electrochemical impedance spectroscopy, operando conductance measurements and in situ UV-VIS spectroelectrochemistry. Our results showed that the electrochemical properties of the films are closely related to the nature of the additives used and allowed us to establish a probable relationship with the Hofmeister series. The correlation coefficients obtained for the capacitance and Hofmeister series descriptors indicate a strong relationship between the salt additives and the electrochemical activity of PEDOT:PSS films. The work allows us to better understand the processes occurring within PEDOT:PSS films during modification with different salts. It also demonstrates the potential for fine-tuning the properties of PEDOT:PSS films by selecting appropriate salt additives. Our findings can contribute to the development of more efficient and tailored PEDOT:PSS-based devices for a wide range of applications, including supercapacitors, batteries, electrochemical transistors, and sensors.
Collapse
Affiliation(s)
- Alexey I Volkov
- Department of Electrochemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| | | |
Collapse
|
13
|
Hossein-Babaei F, Chegini E. The complex permittivity of PEDOT:PSS. J Chem Phys 2023; 158:2890483. [PMID: 37184021 DOI: 10.1063/5.0142523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
High permittivity materials are required for efficient organic photovoltaic devices, and the addition of the conjugated polymer composite poly(3,4-ethylenedioxythiophen) polystyrene sulfonate (PEDOT:PSS) to dielectric polymers has been shown to significantly heighten their permittivity. The permittivity of PEDOT:PSS at the optical and microwave frequencies has been investigated, but PEDOT:PSS layers are mainly used for low-frequency device applications, where accurate dielectric property measurements are hindered by their high electrical conductivity and the problems arising from the metal-polymer interfaces. Here, we determine the complex relative permittivity (εr*=εr'-jεr″) of PEDOT:PSS layers perpendicular to the layer plane in the 10-2-106 Hz range by combining data from the reactive energy estimations and electrochemical impedance spectroscopy, and discover that: εr' at <1 Hz is ultra-high (∼106) decreasing with frequency to ∼5 at 106 Hz; the experimental data fit the Cole-Cole dielectric relaxation model by considering multiple relaxation mechanisms; PEDOT:PSS polarizes nonlinearly and εr' increases with the intensity of the applied external field; low frequency εr' increases with both thickness and temperature of the layer, opposite trend of temperature-dependence prevails at >103 Hz; the dielectric properties of PEDOT:PSS are highly anisotropic and the in-plane εr' at 1.0 kHz is three orders of magnitude higher than the vertical εr'; and that the εr'' decreases proportional to the reciprocal of frequency (1/f). The latter finding provides an explanation for the ubiquitous pink noise accompanying signals transmitted through organic conductor links. The described methodology can be adopted for investigations on other conjugated polymers.
Collapse
Affiliation(s)
- Faramarz Hossein-Babaei
- Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Ebrahim Chegini
- Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| |
Collapse
|
14
|
Okamoto K, Fujita Y, Nishigaya K, Tanabe K. An all ambient, room temperature-processed solar cell from a bare silicon wafer. PNAS NEXUS 2023; 2:pgad067. [PMID: 37007707 PMCID: PMC10063214 DOI: 10.1093/pnasnexus/pgad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/15/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
Solar cells are a promising optoelectronic device for the simultaneous solution of energy resource and environmental problems. However, their high cost and slow, laborious production process so far severely hinder a sufficient widespread of clean, renewable photovoltaic energy as a major alternative electricity generator. This undesirable situation is mainly attributed to the fact that photovoltaic devices have been manufactured through a series of vacuum and high-temperature processes. Here we realize a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/Si heterojunction solar cell fabricated only in ambient and room temperature conditions from a plain Si wafer, with an over 10% energy conversion efficiency. Our production scheme is based on our finding that PEDOT:PSS photovoltaic layers actively operate even on highly doped Si substrates, which substantially mitigates the condition requirements for electrode implementation. Our approach may pave the way for facile, low-cost, high-throughput solar cell fabrication, useful in various fields even including developing countries and educational sites.
Collapse
Affiliation(s)
- Kazuya Okamoto
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Yutaka Fujita
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Kosuke Nishigaya
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Katsuaki Tanabe
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Spectroelectrochemistry of Electroactive Polymer Composite Materials. Polymers (Basel) 2022; 14:polym14153201. [PMID: 35956715 PMCID: PMC9370871 DOI: 10.3390/polym14153201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
In this review, we have summarized the main advantages of the method of spectroelectrochemistry as applied to recent studies on electrosynthesis and redox processes of electroactive polymer composite materials, which have found wide application in designing organic optoelectronic devices, batteries and sensors. These polymer composites include electroactive polymer complexes with large unmovable dopant anions such as polymer electrolytes, organic dyes, cyclodextrins, poly(β-hydroxyethers), as well as polymer-inorganic nanocomposites. The spectroelectrochemical methods reviewed include in situ electron absorption, Raman, infrared and electron spin resonance spectroscopies.
Collapse
|