1
|
Hu C, Zhang Y, Pang X, Chen X. Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412185. [PMID: 39552002 DOI: 10.1002/adma.202412185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Poly(lactic acid) (PLA) is a representative biobased and biodegradable aliphatic polyester and a front-runner among sustainable materials. As a semicrystalline thermoplastic, PLA exhibits excellent mechanical and physical properties, attracting considerable attention in commodity and medical fields. Stereochemistry is a key factor affecting PLA's properties, and to this end, the engineering of PLA's microstructure for tailored material properties has been an active area of research over the decade. This Review first covers the basic structural variety of PLA. A perspective on the current states of stereocontrolled synthesis as well as the relationships between the structures and properties of PLA stereosequences are included, with an emphasis on record regularity and properties. At last, state-of-the-art examples of high-performance PLA-based materials within an array of applications are given, including packaging, fibers, and textiles, healthcare and electronic devices. Among various stereo-regular sequences of PLA, poly(L-lactic acid) (PLLA) is the most prominent category and has myriad unique properties and applications. In this regard, cutting-edge applications of PLLA are mainly overviewed in this review. At the same time, new materials developed based on other PLA stereosequences are highlighted, which holds the potential to a wide variety of PLA-based sustainable materials.
Collapse
Affiliation(s)
- Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
2
|
Hua M, Pan Y, Jiang C, Yu P, Li X, Gao Y, Xu S, Pan G. A facile strategy for the preparation of polylactide nano-microspheres with enhanced stereo-complexations. RSC Adv 2024; 14:30192-30200. [PMID: 39315020 PMCID: PMC11418589 DOI: 10.1039/d4ra04919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Stereo-complexed polylactide (sc-PLA) nano-microspheres were separated by adding poor solvent to the poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend solution. The effects of different process parameters (concentration, processing method, ratio of PLLA/PDLA blend solution to poor solvent) on the microsphere particle size were investigated. The microscopic morphology, crystallinity, and thermal properties were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, two-dimensional wide-angle X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results indicated that when the concentration reached 10 wt% and the PLLA/PDLA blend solution to poor solvent ratio was 1 : 5, the sc-PLA nano-microspheres exhibited more regular shape, good sphericity and uniform particle size, and the highest crystallinity. Additionally, the degree of crystallinity of the stereo-complexed crystals was as high as 39.60%, the rate of stereo-complexation was 99.65%, and the melting temperature reached 220 °C, indicating notable improvement in the crystallization and thermal properties. The sc-PLA nano-microspheres obtained in this research could be used as a nucleating agent for fibers and drug delivery carrier, and the sc-PLA nano-microspheres have broad application prospects in the textile and biomedical fields.
Collapse
Affiliation(s)
- Ming Hua
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Ying Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Changmei Jiang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Peiyan Yu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Xingang Li
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Yao Gao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Gangwei Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| |
Collapse
|
3
|
Yang C, Wu XT, Yu L, Bi CA, Du FS, Li ZC. Photochemical [2 + 2] Cycloaddition Enables the Synthesis of Highly Thermally Stable and Acid/Base-Resistant Polyesters from a Nonpolymerizable α,β-Conjugated Valerolactone. ACS Macro Lett 2024; 13:1084-1092. [PMID: 39103245 DOI: 10.1021/acsmacrolett.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a simple strategy to transform a nonpolymerizable six-membered α,β-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO), into polymerizable bicyclic lactones via photochemical [2 + 2] cycloaddition. Two bicyclic lactones, M1 and M2, were obtained by the photochemical [2 + 2] cycloaddition of tetramethylethylene and DPO. Ring-opening polymerization (ROP) of M1 and M2 catalyzed by diphenyl phosphate (DPP), La[N(SiMe3)2]3, and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris (dimethylamino) phosphoranylide-namino]-2λ5, 4λ5-catenadi(phosphazene) (tBu-P4) were conducted. M1 is highly polymerizable, either DPP or La[N(SiMe3)2]3 could catalyze its living ROP under mild conditions, affording the well-defined PM1 with a predictable molar mass and low dispersity. M2 could only be polymerized with tBu-P4 as the catalyst, also generating the same polymer PM1. PM1 has high thermal stability, with a Td,5% being up to 376 °C. Ring-opening copolymerization (ROcP) of M1 and δ-valerolactone (δ-VL) catalyzed by La[N(SiMe3)2]3 afforded a series of random copolymers with enhanced thermal stabilities. Both PM1 and the copolymer containing 10 mol % M1 exhibited excellent resistance to acidic and basic hydrolysis. Our results demonstrate that direct photochemical [2 + 2] cycloaddition of α,β-conjugated valerolactone is not only a strategy to tune its polymerizability, but also allows for the synthesis of highly thermally stable aliphatic polyesters, inaccessible by other methods.
Collapse
Affiliation(s)
- Chun Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Xiao-Tong Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Lefei Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Cheng-Ao Bi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Chen Y, Lan Q. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization. Int J Biol Macromol 2024; 260:129459. [PMID: 38232890 DOI: 10.1016/j.ijbiomac.2024.129459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Although polymers tend not to mix, it remains challenging to characterize the immiscibility of enantiomeric poly(ʟ-lactide) (PLLA) and poly(ᴅ-lactide) (PDLA), particularly with equivalent and high molecular weight (high MW), which frustratingly disfavors the exclusive stereocomplexation. By introducing a random copolymer (PLC) of ʟ-lactide and caprolactone to form binary blends with PLLA and PDLA, the phase behavior of high-MW PLLA/PDLA blends was investigated mainly by using differential scanning calorimetry (DSC) and atomic force microscopy (AFM). DSC results showed that PLLA/PLC blends exhibited a single glass transition temperature (Tg), which depended on the blending ratio and precisely corresponded with the theoretical values calculated from the Fox equation. In comparison, PDLA/PLC blends showed composition-dependent heat-capacity increment at two unchanged Tg values of pure PLC and PDLA. AFM observation revealed that PLC is completely miscible with PLLA at high MW but is immiscible with PDLA, logically suggesting immiscibility of high-MW PLLA and PDLA. Moreover, AFM results demonstrated that high-MW PLLA/PDLA blends exhibited spherical droplets in asymmetric blends and bicontinuous interpenetrating worm-like patterns in symmetric counterparts, showing distinct and well-defined interfaces, confirming the microphase separation. Additionally, different MWs fundamentally led to significant differences in miscibility, which consequently affected the crystallization behaviors of PLLA/PDLA blends. This work provides evidence for (im)miscibility and its crucial impact on the crystallization of PLLA/PDLA blends and has important implications for understanding the stereocomplexation of polymers.
Collapse
Affiliation(s)
- Yujing Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qiaofeng Lan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Suharman, Heah WY, Yamagishi H, Yamamoto Y. Poly(lactic acid) stereocomplex microspheres as thermally tolerant optical resonators. NANOSCALE 2023; 15:19062-19068. [PMID: 37987533 DOI: 10.1039/d3nr05318k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Thermally tolerant polymer optical resonators are fabricated from a stereocomplex of poly(L-lactic acid) and poly(D-lactic acid) through the oil-in-water miniemulsion method. The thermal stability of the microspheres of the stereocomplex poly(lactic acid) (SC-PLA) is superior to that of the homochiral poly(lactic acid) (HC-PLA). As a result of the high thermal stability, the optical resonator properties of the SC-PLA microspheres are preserved at an elevated temperature of up to 230 °C, which is 70 °C higher than that of microspheres formed from HC-PLA.
Collapse
Affiliation(s)
- Suharman
- Department of Material Innovation, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Jl. Dr. T. Mansur No. 9, Padang Bulan, Medan Baru, Medan, Sumatera Utara 20222, Indonesia
| | - Wey Yih Heah
- Department of Material Science, Institute of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Hiroshi Yamagishi
- Department of Material Innovation, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Material Science, Institute of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Yohei Yamamoto
- Department of Material Innovation, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Material Science, Institute of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
6
|
Wang Q, Chen X, Zeng S, Chen P, Xu Y, Nie W, Xia R, Zhou Y. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties. Int J Biol Macromol 2023; 240:124515. [PMID: 37085066 DOI: 10.1016/j.ijbiomac.2023.124515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
Renewable yet biodegradable natural fiber (e.g., cellulose nanofiber (CNF)) reinforced bio-based polymers (e.g., polylactic acid (PLA)) are being applied for the manufacture of clean packaging products. The interface incompatibility between hydrophilic CNF and hydrophobic PLA still restricts the promotion of high-performance bio-based products. Herein, a polycondensate-coated CNF hybrid, wherein silane, aluminate, and titanate coupling agent monomers were in-situ polymerized onto the CNF surface via dehydration self-condensation, was designed and further employed as strengthening/toughening nanofillers for fabricating the CNF-reinforced PLA composite. Results showed that the polycondensate coatings could efficiently promote the dispersion of CNFs and enhance interfacial compatibility between CNFs and PLA. Attributing to the synergistic effect of polycondensate coatings and CNFs, a considerable improvement in processing, mechanical and thermal properties was obtained in resultant CNF/PLA composites. With adding 2.5 wt% polycondensate-coated CNFs, the tensile strength, Young's modulus, and tensile toughness of CNF-reinforced PLA composites was raised by about 27 %, 51 % and 68 %, respectively; also, such composite possessed greater elasticity and higher melt strength than pure PLA. This study provides a novel interface control strategy to fabricate low-cost yet high-performance PLA-based composites for sustainable packaging application.
Collapse
Affiliation(s)
- Qiming Wang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xinyi Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ru Xia
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Competition effect of solid-state stretching induced orientation and phase separation on stereocomplex crystallization of PLLA/PDLA during annealing. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Zhong CN, Liu YD, Tang J, Chen WS, Li SC, Shao J, Hou HQ. A Facile Strategy to Enhance the Formation of Stereocomplex Crystallites in Poly(L-lactic acid)/Poly(D-lactic acid) Blend with High Molecular Weights. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-023-2901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Guo M, Zhao Z, Xie Z, Wu W, Wu W, Gao Q. Role of the Branched PEG- b-PLLA Block Chain in Stereocomplex Crystallization and Crystallization Kinetics for PDLA/MPEG- b-PLLA- g-glucose Blends with Different Architectures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15866-15879. [PMID: 36469019 DOI: 10.1021/acs.langmuir.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The isothermal crystallization behavior and corresponding morphology evolution of poly(d-lactic acid) (PDLA) blends with PLLA6.7k or MPEG-b-PLLA6.7k-g-glucose with different architectures and different PLLA-grafted copolymer contents were investigated. The formation of stereocomplexes (SCs) in between the chain branched structure of MPEG-b-PLLA6.7k-g-glucose and PDLA chains acting as the physical crosslinking points slows down the motion of PDLA chains, but the SCs could act as a heterogeneous nucleating agent for the late formation of homocrystals (HCs) in the blend system, accelerating the crystallization kinetics of HCs through enhancing the nucleation density. For PDLA/MPEG-b-PLLA6.7k-g-glucose blends, the mobility of SCs in the blend system and the nucleation density of SCs in the blends exhibit oppositional behavior during the isothermal crystallization at a Tc of 130 °C. The evolution of the crystal growth and structure during the isothermal crystallization process by rheometry has revealed the interesting role of the branched chains of MPEG-b-PLLA6.7k-g-glucose in the mechanism of the crystallization in PDLA blends.
Collapse
Affiliation(s)
- Mingwei Guo
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Zhifeng Zhao
- College of Chemical Engineering, Hebei University of Technology, Tianjin300130, China
| | - Zhongyuan Xie
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Weixin Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Wenjing Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Qinwei Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
- Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing210037, China
| |
Collapse
|
10
|
Zia‐ul‐Haq M, Haq ZU, Wu J, Peng Z, Zhang Y. Mechanical properties, thermal stability, and thermal degradation kinetics of silicone rubber/ethylene‐vinyl acetate copolymer/magnesium sulfate whisker composites compatibilized by ethylene‐acrylic acid copolymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.53404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Muhammad Zia‐ul‐Haq
- State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zaheer Ul Haq
- State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Jian Wu
- State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zonglin Peng
- State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
11
|
Guo M, Wu W, Wu W, Gao Q. Competitive Mechanism of Stereocomplexes and Homocrystals in High-Performance Symmetric and Asymmetric Poly(lactic acid) Enantiomers: Qualitative Methods. ACS OMEGA 2022; 7:41412-41425. [PMID: 36406546 PMCID: PMC9670727 DOI: 10.1021/acsomega.2c05198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
To systematically explore the critical contributions of both molecular weights and crystallization temperature and chain length and molar ratios to the formation of stereocomplexes (SCs), our group quantitatively prepared a wide MW range of symmetric and asymmetric poly(lactic acid) (PLA) racemic blends, which contains L-MW PLLA with M n > 6k g/mol. The crystallinity and relative fraction of SCs increase with T c, and the SCs are exclusively formed at T c > 180 °C in M/H-MW racemic blends. When MWs of one of the enantiomers are over 6k and less than 41k, multiple stereocomplexation is clear in the asymmetric racemic blends and more ordered SCs form with less entanglement or the amorphous region compared to those for the MW of the enantiomers over 41k in the symmetric/asymmetric enantiomers. When the MW of the blends is more than 41k, SCs and homocrystals (HCs) coexist in the symmetric enantiomers and the multicomplexation can restrict the asymmetric enantiomers. This study provides a deep comprehensive insight into the stereocomplex crystallization mechanism of polymers and provides a reference value for future research attempting to prepare stereocomplex materials.
Collapse
Affiliation(s)
- Mingwei Guo
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
| | - Wenjing Wu
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
| | - Weixin Wu
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
| | - Qinwei Gao
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, China
| |
Collapse
|
12
|
Chen Q, Auras R, Corredig M, Kirkensgaard JJK, Mamakhel A, Uysal-Unalan I. New opportunities for sustainable bioplastic development: Tailorable polymorphic and three-phase crystallization of stereocomplex polylactide by layered double hydroxide. Int J Biol Macromol 2022; 222:1101-1109. [PMID: 36174869 DOI: 10.1016/j.ijbiomac.2022.09.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) is a promising sustainable approach and gaining momentum to overcome the shortcomings of polylactide (PLA) for its use as a replacement for fossil-based plastics. Filler addition in tailoring the crystallization of stereocomplex PLA (SC-PLA) attracts extensive attention; however, research has primarily focused on the heterogeneous nucleation effect of filler. The impact of filler on the chain behavior of SC-PLA during crystallization has not been exclusively discussed, and the rigid amorphous fraction (RAF) development remains unknown. In this study, the crystallization of PLLA/PDLA blends was modified by low loading of layered double hydroxide (LDH) (≤ 1 wt%) with the proposed local effect of such filler, and additional RAF development was incurred. In the early stage of crystallization, LDH facilitates the pairing of PLLA and PDLA and arrests the ordered SC pairs during the dynamic balance between the separation and pairing of racemic segments. This explains the severely suppressed homochiral (HC) crystallization, promoted SC crystallization, and additional RAF formation driven by the nucleation-induced chain ordering. This work, for the first time, highlights the role of LDH in creating SC-PLA with tailorable polymorphism and RAF, where the mechanism can be extended to other filler-type nucleator systems.
Collapse
Affiliation(s)
- Qi Chen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park, 48, 8200 Aarhus N, Denmark
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park, 48, 8200 Aarhus N, Denmark
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Aref Mamakhel
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park, 48, 8200 Aarhus N, Denmark.
| |
Collapse
|
13
|
Xu S, Sun C, Yuan W, Zhou J, Xu W, Zheng Y, Yu C, Pan P. Evolution of thermal behavior, mechanical properties, and microstructure in stereocomplexable poly(lactic acid) during physical ageing. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|