1
|
Ma Y, Wang Z, Jiang L, Zhang J, Ren C, Kou X, Liu S, Li Z. Bulky Phosphazenium Salt Controlling Chemoselective Terpolymerization of Epoxide, Anhydride and CO 2: From Well-Defined Block to Truly Random Copolymers. Angew Chem Int Ed Engl 2025; 64:e202416104. [PMID: 39353854 DOI: 10.1002/anie.202416104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Copolymers with precise compositions and controlled sequences are great appealing for high-performance polymeric materials, but their synthesis is very challenging. In this study, tetrakis[tris(dimethylamino)phosphoranylidenamino] phosphonium chloride (P5Cl) and triethylboron (TEB) were chosen as the binary catalyst to synthesize both well-defined block and truly random poly(ester-carbonate) copolymers via the one-pot/one-step terpolymerization of epoxide/anhydride/CO2 under metal-free conditions. The bulky nature of phosphazenium cation not only led to loose cation-anion pairs and enhanced the reactivity, but also provided the chain-end an appropriate protection and improved the controllability. In particular, P5Cl/TEB with a molar ratio of 1/0.5 showed an extraordinary chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CHO/CO2. Thus, well-defined block polyester-polycarbonate copolymers were synthesized by CHO/PA/CO2 terpolymerization. The chemoselectivity was easily tuned and the ROAC of CHO/PA and ROAC of CHO/CO2 occurred simultaneously with P5Cl/TEB=1/2, producing truly random poly(ester-carbonate) copolymers from CHO/PA/CO2. In addition, this P5Cl/TEB catalyst and the strategy to regulate its chemoselectivity are versatile for various anhydrides, epoxides and initiators. Thus, poly(ester-carbonate) copolymers with varying sequences, compositions, and topologies are successfully synthesized, making it possible to compare their properties and to expand their applications.
Collapse
Affiliation(s)
- Yukun Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zehao Wang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lihang Jiang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanli Ren
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Shellard EK, Diment WT, Resendiz-Lara DA, Fiorentini F, Gregory GL, Williams CK. Al(III)/K(I) Heterodinuclear Polymerization Catalysts Showing Fast Rates and High Selectivity for Polyester Polyols. ACS Catal 2024; 14:1363-1374. [PMID: 38327648 PMCID: PMC10845108 DOI: 10.1021/acscatal.3c05712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/09/2024]
Abstract
Low molar mass, hydroxyl end-capped polymers, often termed "polyols," are widely used to make polyurethanes, resins, and coatings and as surfactants in liquid formulations. Epoxide/anhydride ring-opening copolymerization (ROCOP) is a controlled polymerization route to make them, and its viability depends upon catalyst selection. In the catalysis, the polyester polyol molar masses and end-groups are controlled by adding specific but excess quantities of diols (vs catalyst), known as the chain transfer agent (CTA), to the polymerizations, but many of the best current catalysts are inhibited or even deactivated by alcohols. Herein, a series of air-stable Al(III)/K(I) heterodinuclear polymerization catalysts show rates and selectivity at the upper end of the field. They also show remarkable increases in activity, with good selectivity and control, as quantities of diol are increased from 10-400 equiv. The reactions are accelerated by alcohols, and simultaneously, their use allows for the production of hydroxy telechelic poly/oligoesters (400 < Mn (g mol-1) < 20,400, Đ < 1.19). For example, cyclohexene oxide (CHO)/phthalic anhydride (PA) ROCOP, using the best Al(III)/K(I) catalyst with 200 equiv of diol, shows a turnover frequency (TOF) of 1890 h-1, which is 4.4× higher than equivalent reactions without any diol (Catalyst/Diol/PA/CHO = 1:10-400:400:2000, 100 °C). In all cases, the catalysis is well controlled and highly ester linkage selective (ester linkages >99%) and operates effectively using bicyclic and/or biobased anhydrides with bicyclic or flexible alkylene epoxides. These catalysts are recommended for future production and application development using polyester polyols.
Collapse
Affiliation(s)
- Edward
J. K. Shellard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Wilfred T. Diment
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Diego A. Resendiz-Lara
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Francesca Fiorentini
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
3
|
Kesavan A, Rajakumar T, Karunanidhi M, Ravi A, Vivekanand P, Kamaraj P, Arumugam N, Hari Kumar S, Perumal K, Djearamane S, Aminuzzaman M, Wong LS, Kayarohanam S. A Comparative analysis of PESC and PPSC copolyesters: Insights into viscosity, thermal behavior, crystallinity, and biodegradability. Heliyon 2024; 10:e24728. [PMID: 38312566 PMCID: PMC10835248 DOI: 10.1016/j.heliyon.2024.e24728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
The study examined various properties of synthesized copolyesters PESC and PPSC. Inherent viscosities of the copolyesters, measured in 1,4-dioxane at 32 °C, were 0.65 dL/g for PESC and 0.73 dL/g for PPSC. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed distinct absorption bands associated with ester carbonyl stretching, C-H bending vibration, C-H group symmetry stretching, and C-O stretching vibrations. 1H and 13C Nuclear magnetic Resonance (NMR) spectroscopy were used to identify specific protons and carbon groups in the polymer chain, revealing the molecular structure of the copolyesters. Differential Scanning Calorimetry (DSC) identified the glass transition, melting, and decomposition temperatures for both copolyesters, indicating variations in the crystalline nature of the copolymers. XRD Spectral studies further elaborated on the crystalline nature, indicating that PPSC is less amorphous than PESC. Biodegradation analysis showed that PESC degrades more quickly than PPSC, with degradation decreasing as the number of methylene groups increase. Scanning Electron Microscopy (SEM) images depicted the surface morphology of the copolyesters before and after degradation, revealing a more roughened surface with pits post-degradation. These findings provide comprehensive insights into the structural and degradable properties of PESC and PPSC copolyesters.
Collapse
Affiliation(s)
- A. Kesavan
- Department of Chemistry, Kalaignar Karunanidhi Government Arts College, Thiruvannamalai, India
| | - T. Rajakumar
- Department of Chemistry, Kalaignar Karunanidhi Government Arts College, Thiruvannamalai, India
| | - M. Karunanidhi
- Department of Chemistry, Government Arts College, Udumalpet, India
| | - A. Ravi
- Department of Chemistry, Kalaignar Karunanidhi Government Arts College, Thiruvannamalai, India
| | - P.A. Vivekanand
- Centre for Catalysis Research, Department of Chemistry, Saveetha Engineering College, Thandalam, Chennai-602105, India
| | - P. Kamaraj
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Chennai 600073, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - S. Hari Kumar
- Chemistry Division, Department of Humanities and Science, Rajalakshmi Institute of Technology, Chennai 600124, Tamilnadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Sinouvassane Djearamane
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan universiti, Bandar Barat, Kampar 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, India
| | - Mohammod Aminuzzaman
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800 Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health sciences, University Geomatika Malaysia, Kuala Lumpur 54200, Malaysia
| |
Collapse
|
4
|
Xu X, Li H, Mehmood A, Chi K, Shi D, Wang Z, Wang B, Li Y, Luo Y. Mechanistic Studies on Aluminum-Catalyzed Ring-Opening Alternating Copolymerization of Maleic Anhydride with Epoxides: Ligand Effects and Quantitative Structure-Activity Relationship Model. Molecules 2023; 28:7279. [PMID: 37959698 PMCID: PMC10649423 DOI: 10.3390/molecules28217279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Previous work has indicated that aluminum (Al) complexes supported by a bipyridine bisphenolate (BpyBph) ligand exhibit higher activity in the ring-opening copolymerization (ROCOP) of maleic anhydride (MAH) and propylene oxide (PO) than their salen counterparts. Such a ligand effect in Al-catalyzed MAH-PO copolymerization reactions has yet to be clarified. Herein, the origin and applicability of the ligand effect have been explored by density functional theory, based on the mechanistic analysis for chain initiation and propagation. We found that the lower LUMO energy of the (BpyBph)AlCl complex accounts for its higher activity than the (salen)AlCl counterpart in MAH/epoxide copolymerizations. Inspired by the ligand effect, a structure-energy model was further established for catalytic activity (TOF value) predictions. It is found that the LUMO energies of aluminum chloride complexes and their average NBO charges of coordinating oxygen atoms correlate with the catalytic activity (TOF value) of Al complexes (R2 value of 0.98 and '3-fold' cross-validation Q2 value of 0.88). This verified that such a ligand effect is generally applicable in anhydride/epoxide ROCOP catalyzed by aluminum complex and provides hints for future catalyst design.
Collapse
Affiliation(s)
- Xiaowei Xu
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Hao Li
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Kebin Chi
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Dejun Shi
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhuozheng Wang
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yi Luo
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
5
|
Cabrera DJ, Lewis RD, Díez-Poza C, Álvarez-Miguel L, Mosquera MEG, Hamilton A, Whiteoak CJ. Group 13 salphen compounds (In, Ga and Al): a comparison of their structural features and activities as catalysts for cyclic carbonate synthesis. Dalton Trans 2023; 52:5882-5894. [PMID: 36852925 DOI: 10.1039/d3dt00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Many complexes based on group 13 elements have been successfully applied as catalysts for the synthesis of cyclic carbonates from epoxides and CO2 and to date these have provided some of the most active catalysts developed. It is notable that most reports have focused on the use of aluminium-based compounds likely because of the well-established Lewis acidity of this element and its cost. In comparison, relatively little attention has been paid to the development of catalysts based on the heavier group 13 elements, despite their known Lewis acidic properties. This study describes the synthesis of aluminium, gallium and indium compounds supported by a readily prepared salphen ligand and explores both their comparative structures and also their potential as catalysts for the synthesis of cyclic carbonates. In addition, the halide ligand which forms a key part of the compound has been systematically varied and the effect of this change on the structure and catalytic activity is also discussed. It is demonstrated that the indium compounds are actually, and unexpectedly, the most active for cyclic carbonate synthesis, despite their lower Lewis acidity when compared to their aluminium congeners. The experimental observations from this work are fully supported by a Density Functional Theory (DFT) study, which provides important insights into the reasons as to why the indium catalyst with bromide, [InBr(salphen)], is most active.
Collapse
Affiliation(s)
- Diego Jaraba Cabrera
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ryan D Lewis
- Sheffield Hallam University, Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Carlos Díez-Poza
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Lucía Álvarez-Miguel
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Marta E G Mosquera
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Alex Hamilton
- Sheffield Hallam University, Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Christopher J Whiteoak
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
6
|
Barker RE, Guo L, Mota CJA, North M, Ozorio LP, Pointer W, Walberton S, Wu X. General Approach to Silica-Supported Salens and Salophens and Their Use as Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. J Org Chem 2022; 87:16410-16423. [DOI: 10.1021/acs.joc.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Ryan E. Barker
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Liping Guo
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Claudio J. A. Mota
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Escola de Química, 21941-909, Rio de Janeiro, Brazil
- INCT Energia & Ambiente, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Leonardo P. Ozorio
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Escola de Química, 21941-909, Rio de Janeiro, Brazil
- INCT Energia & Ambiente, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - William Pointer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Sarah Walberton
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Xiao Wu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
7
|
Yu Y, Zheng Y, Liang J, Sun X, Cao Y, Pan P, Wei Z. Temperature-Dependent Polymorphic Crystallization and Crystalline Structure of Unsaturated Polyesters Derived from cis-2-Butene-1,4-diol. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yang Yu
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian116622, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou324000, China
| | - Junhao Liang
- Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, 510640Guangzhou, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yan Cao
- Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, 510640Guangzhou, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou324000, China
| | - Zhiyong Wei
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
8
|
Wood ZA, Assefa MK, Fieser ME. Simple yttrium salts as highly active and controlled catalysts for the atom-efficient synthesis of high molecular weight polyesters. Chem Sci 2022; 13:10437-10447. [PMID: 36277642 PMCID: PMC9473511 DOI: 10.1039/d2sc02745c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a promising route to sustainable aliphatic polyesters with diverse mechanical and thermal properties. Here, simple yttrium chloride salts (YCl3THF3.5 and YCl3·6H2O), in combination with a bis(triphenylphosphoranylidene)ammonium chloride [PPN]Cl cocatalyst, are used as efficient and controlled catalysts for ten epoxide and anhydride combinations. In comparison to past literature, this simple salt system exhibits competitive turn-over frequencies (TOFs) for most monomer pairs. Despite no supporting ligand framework, these salts provide excellent control of dispersity, with suppression of side reactions. Using these catalysts, the highest molecular weight reported to date (302.2 kDa) has been obtained with a monosubstituted epoxide and tricyclic anhydride. These data indicate that excellent molecular weight control and suppression of side reactions for ROCOP of epoxides and cyclic anhydrides can coincide with high activity using a simple catalytic system, warranting further research in working towards industrial viability. Two simple yttrium salts, YCl3THF3.5 and YCl3·6H2O, are highly active and controlled catalysts for the perfectly alternating ring-opening copolymerization of epoxides and cyclic anhydrides.![]()
Collapse
Affiliation(s)
- Zachary A. Wood
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Mikiyas K. Assefa
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Megan E. Fieser
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|