1
|
Ni L, Zhou C, Shen L, Yang K, Luo Y, Yan L, Xia S, Liang M, Zhou S, Zou H. Lightweight Copolymerized Polyimide Foams Containing Trifluoromethyl and Siloxane Moieties for Thermal Insulation and Hydrophobic Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30127-30139. [PMID: 40329439 DOI: 10.1021/acsami.5c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Lightweight porous materials with integrated cushioning and shock absorption, excellent thermal insulation, and hydrophobicity demonstrate a broad application prospect in high-end engineering sectors. Herein, the fabrication of lightweight polyimide foams (PIFs) containing trifluoromethyl and siloxane moieties was proposed by adopting copolymerization and microwave-assisted foaming processes. The synthesis and preparation of fluorine- and silicon-containing polyester ammonium salt (PEAS) precursor powders and subsequent PIFs, as well as the relationship and mechanism between structure and properties, were systematically explored. The construction of the anisotropic pore structure was attributed to the "bottom-up" directional foaming behavior of the microwave-assisted foaming process, which endowed PIFs with different traits with respect to the pore growth direction. The resulting copolymerized PIFs displayed low density (18.3-27.7 kg/m3), enhanced mechanical flexibility (compressive strength improvement of 26.2%, compression response rate between 97.5 and 99.1%), excellent thermal stability (T5% > 485.2 °C), and thermal insulation performance. Combining the micro/nano pore structure with the presence of hydrophobic trifluoromethyl and siloxane moieties, PIFs exhibited exceptional hydrophobicity with the water contact angle, reaching as high as 145.9° in the vertical direction (parallel to pore growth direction) and 136.3° in the horizontal direction (perpendicular to pore growth direction). Therefore, lightweight, mechanically flexible, thermally insulating, and hydrophobic PIFs were successfully prepared by the proposed approach, which demonstrate potential applications in the aerospace, transportation, microelectronics, and nuclear energy sectors, among others.
Collapse
Affiliation(s)
- Long Ni
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Cuiqing Zhou
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lu Shen
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Ke Yang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yinfu Luo
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Liwei Yan
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shuang Xia
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Mei Liang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shengtai Zhou
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Bukowczan A, Raftopoulos KN, Pielichowski K. Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications. Polymers (Basel) 2025; 17:784. [PMID: 40292648 PMCID: PMC11945759 DOI: 10.3390/polym17060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Studies on polyurethane (PU) materials offer advantageous properties utilized in various applications. The complex nature of the PUs structure and morphology gives them unique properties, but at the same time poses a considerable challenge for the characterization and design of structure-property relationships. Polyurethanes with tailored crystallinity can exhibit peculiar resistance to mechanical and chemical factors, allowing a widening range of application. Liquid crystalline polyurethanes have gained renewed interest thanks to the development of research methodologies and new possibilities for modifying diol and isocyanate monomers. The study shows that liquid crystal phenomena in polyurethanes can be effectively used for polymer compatibilization, in the fiber and nanofibers applications, as well as in 'smart' multi-stimuli materials.
Collapse
Affiliation(s)
- Artur Bukowczan
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | | | - Krzysztof Pielichowski
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
3
|
Gao X, Li X, Chen J, Huo D, Yin Y, Nan D. TiO 2-Modified Graphene Oxide Fillers Strengthen Acrylic Coated Samples Corrosion and Weathering Resistance on Q235 Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1418-1428. [PMID: 39834236 DOI: 10.1021/acs.langmuir.4c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
As an exceptional 2D nanofiller, graphene oxide (GO) is extensively employed to amplify the protective properties of coatings. The dispersion of GO significantly influences the protective efficacy of the coatings. Here, a surface modification of GO through the integration of nanosized titanium dioxide (TiO2) was employed, thereby facilitating the synthesis of an FGO-TiO2 nanoparticle characterized by a substantial interlayer spacing (0.91 nm). Subsequently, FGO-TiO2 nanofiller was incorporated into an acrylic coating matrix, resulting in an advanced acrylic coated sample that simultaneously exhibits both corrosion resistance and UV protection properties. EIS analysis revealed that, after 350 h of immersion, the low-frequency impedance modulus of the FGO-TiO2/acrylic coated sample reached 1.028 GΩ·cm2, a significant increase compared to the pure acrylic coated sample (0.017 GΩ·cm2). This improvement suggests the enhanced dispersion of FGO-TiO2 in the acrylic coating, which effectively lengthens the diffusion path for corrosive agents, and it is anticipated to replace the conventional primer-topcoat composite coating system.
Collapse
Affiliation(s)
- Xin Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jie Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Dongxia Huo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yue Yin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Ding Nan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
4
|
Zhang F, Zhang J, Zhang K, Zhong X, He M, Qiu H, Gu J. Highly Thermally Conductive Liquid Crystalline Epoxy Resin Vitrimers with Reconfigurable, Shape-Memory, Photo-Thermal, and Closed-Loop Recycling Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410362. [PMID: 39576734 PMCID: PMC11744650 DOI: 10.1002/advs.202410362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/26/2024] [Indexed: 11/24/2024]
Abstract
The low thermal conductivity, poor toughness, and non-reprocessability of thermosetting epoxy resins severely restrict their applications and sustainable development in flexible electronics. Herein, liquid crystalline epoxy (LCE) and dynamic ester and disulfide bonds are introduced into the cured network of bisphenol A epoxy resin (E-51) to construct highly thermally conductive flexible liquid crystalline epoxy resin (LCER) vitrimers. LCER vitrimers demonstrate adjustable mechanical properties by varying the ratio of LCE to E-51, allowing it to transition from soft to strong. Typically, a 75 mol% LCE to 25 mol% E-51 ratio results in an in-plane thermal conductivity (λ) of 1.27 W m-1 K-1, over double that of pure E-51 vitrimer (0.61 W m-1 K-1). The tensile strength and toughness increase 2.88 folds to 14.1 MPa and 2.45 folds to 20.1 MJ m-3, respectively. Besides, liquid crystalline phase transition and dynamic covalent bonds enable triple shape memory and three-dimensional shape reconstruction. After four reprocessing cycles, λ and tensile strength remain at 94% and 72%, respectively. Integrating carbon nanotubes (CNTs) imparts photo-thermal effect and enables "on" and "off" switch under near-infrared light to LCER vitrimer. Furthermore, the CNTs/LCER vitrimer displays light-induced actuation, self-repairing, and self-welding besides the closed-loop recycling and rapid degradation performance.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Kuan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Xiao Zhong
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| |
Collapse
|
5
|
Tang X, Lu Y, Li S, Zhu M, Wang Z, Li Y, Hu Z, Zheng P, Wang Z, Liu T. Hierarchical Polyimide Nonwoven Fabric with Ultralow-Reflectivity Electromagnetic Interference Shielding and High-Temperature Resistant Infrared Stealth Performance. NANO-MICRO LETTERS 2024; 17:82. [PMID: 39625547 PMCID: PMC11615167 DOI: 10.1007/s40820-024-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024]
Abstract
Designing and fabricating a compatible low-reflectivity electromagnetic interference (EMI) shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military. Hence, a hierarchical polyimide (PI) nonwoven fabric is fabricated by alkali treatment, in-situ growth of magnetic particles and "self-activated" electroless Ag plating process. Especially, the hierarchical impedance matching can be constructed by systematically assembling Fe3O4/Ag-loaded PI nonwoven fabric (PFA) and pure Ag-coated PI nonwoven fabric (PA), endowing it with an ultralow-reflectivity EMI shielding performance. In addition, thermal insulation of fluffy three-dimensional (3D) space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance. More importantly, the strong bonding interaction between Fe3O4, Ag, and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance. Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy, and inhibit external infrared detection.
Collapse
Affiliation(s)
- Xinwei Tang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yezi Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Shuangshuang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Mingyang Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zixuan Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Li
- Jiangsu Ferrotec Semiconductor Technology Co., Ltd., Yancheng, 214000, Jiangsu, People's Republic of China
| | - Zaiyin Hu
- Guizhou Aerospace Wujiang Electro-Mechanical Equipment Co., Ltd., No. 20-5, Dalian Road Aerospace Industrial Park, Huichuan District, Zunyi City, 563000, Guizhou, People's Republic of China
| | - Penglun Zheng
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, 618307, Sichuan, People's Republic of China
| | - Zicheng Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Wan B, Xiao M, Dong X, Yang X, Zheng MS, Dang ZM, Chen G, Zha JW. Dynamic Covalent Adaptable Polyimide Hybrid Dielectric Films with Superior Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304175. [PMID: 37382198 DOI: 10.1002/adma.202304175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Polyimides (PIs) used in advanced electrical and electronic devices can be electrically/mechanically damaged, resulting in a significant waste of resources. Closed-loop chemical recycling may prolong the service life of synthetic polymers. However, the design of dynamic covalent bonds for preparing chemically recyclable crosslinked PIs remains a challenging task. Herein, new crosslinked PI films containing a PI oligomer, chain extender, and crosslinker are reported. They exhibit superior recyclability and excellent self-healable ability owing to the synergistic effect of the chain extender and crosslinker. The produced films can be completely depolymerized in an acidic solution at ambient temperature, leading to efficient monomer recovery. The recovered monomers may be used to remanufacture crosslinked PIs without deteriorating their original performance. In particular, the designed films can serve as corona-resistant films with a recovery rate of approximately 100%. Furthermore, carbon fiber reinforced composites (CFRCs) with PI matrices are suitable for harsh environments and can be recycled multiple times at a non-destructive recycling rate up to 100%. The preparation of high-strength dynamic covalent adaptable PI hybrid films from simple PI oligomers, chain extenders, and crosslinkers may provide a solid basis for sustainable development in the electrical and electronic fields.
Collapse
Affiliation(s)
- Baoquan Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaodi Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xing Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Ming-Sheng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Zhi-Min Dang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - George Chen
- Department of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jun-Wei Zha
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| |
Collapse
|
7
|
Yu P, He Z, Zhao Y, Song W, Miao Z. Reverse Mode Polymer Stabilized Cholesteric Liquid Crystal Flexible Films with Excellent Bending Resistance. Molecules 2024; 29:4276. [PMID: 39275123 PMCID: PMC11397460 DOI: 10.3390/molecules29174276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due to the mobility of CLC molecules during the bending deformation. In this work, a reverse-mode PSCLC flexible film with excellent bending resistance was fabricated by the construction of polymer spacer columns. The effect of the concentration of the polymerizable monomer C6M and chiral dopant R811 on the electro-optical properties and polymer microstructure of the film were studied. The sample B2 containing 3 wt% of C6M and 3 wt% R811 presented the best electro-optical performance. The electrical switch between transparent and opaque state of the flexible PSCLC film after bending not only indicated the excellent electro-optical switching performance, but also demonstrated the outstanding bending resistance of the sample with polymer spacer columns, which makes the PSCLC film containing polymer spacer columns have a great potential to be applied in the field of flexible devices.
Collapse
Affiliation(s)
- Ping Yu
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Zemin He
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Wenqi Song
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (IOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Luo F, Cui W, Zou Y, Li H, Qian Q, Chen Q. Recyclable and elastic highly thermally conductive epoxy-based composites with covalent-noncovalent interpenetrating networks. MATERIALS HORIZONS 2024; 11:3386-3395. [PMID: 38689529 DOI: 10.1039/d4mh00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
High-power electronic architectures and devices require elastic thermally conductive materials. The use of epoxy resin in thermal management is limited due to its rigidity. Here, based on epoxy vitrimer, flexible polyethylene glycol (PEG) chains are introduced into covalent adaptable networks to construct covalent-noncovalent interpenetrating networks, enabling the elasticity of epoxy resins. Compared to traditional silicone-based thermal interface materials, the newly developed elastic epoxy resin shows the advantages of reprocessability, self-healing, and no small molecule release. Results show that, even after being filled with boron nitride and liquid metal, the material maintains its resilience, reprocessability and self-healing properties. Leveraging these characteristics, the composite can be further processed into thin films through a repeated pressing-rolling technique that facilitates the forced orientation of the fillers. Subsequently, the bulk composites are reconstructed using a film-stacking method. The results indicate that the thermal conductivity of the reconstructed bulk composite reaches 3.66 W m-1 K-1, achieving a 68% increase compared to the composite prepared through blending. Due to the existence of covalent adaptable networks, the inorganic and inorganic components of the composite prepared in this work can be completely separated under mild conditions, realizing closed-loop recycling.
Collapse
Affiliation(s)
- Fubin Luo
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| | - Wenqi Cui
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Yingbing Zou
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Hongzhou Li
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Qinghua Chen
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
9
|
Teng M, Luo X, Qin R, Feng J, Zhang P, Wang P, Zhang X, Wang X. Biocompatible and Biodegradable 3D Graphene/Collagen Fiber Hybrids for High-Performance Conductive Networks and Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34213-34228. [PMID: 38885612 DOI: 10.1021/acsami.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Polymer-based flexible conductive materials are crucial for wearable electronics, electronic skin, and other smart materials. However, their development and commercial applications have been hampered by the lack of strain tolerance in the conductive network, poor bonding with polymers, discomfort during wear, and a lack of biocompatibility. This study utilized oil-tanned leather with a natural network structure, high toughness, and high tensile deformation recovery as a structural template. A graphene (Gr) conductive network was then constructed on the collagen network of the leather, with coordination cross-linking between Gr and collagen fibers through aluminum ions (Al3+). A new flexible conductive material (Al-GL) was then constructed. Molecular dynamics simulations and experimental validation revealed the existence of physical adsorption, hydrogen bonding adsorption, and ligand bonding between Al3+, Gr, and collagen fibers. Although we established that the binding sites between Al3+ and collagen fibers were primarily on carboxyl groups (-COOH), the mechanism of chemical bonding between Gr and collagen fibers remains unclear. The Al-GL composite exhibited a high shrinkage temperature (67.4 °C) and low electrical resistance (16.1 kΩ·sq-1), as well as good softness (9.33 mN), biocompatibility, biodegradability (<60 h), and air and moisture permeability. Furthermore, the incorporation of Al3+ resulted in a heightened Gr binding strength on Al-GL, and the resistance remained comparable following 1 h of water washing. The Al-GL sensor prepared by WPU encapsulation not only demonstrated highly sensitive responses to diverse motion signals of the human body but also retained a certain degree of response to external mechanical effects underwater. Additionally, the Al-GL-based triboelectric nanogenerator (Al-GL TENG) exhibited distinct response signals to different materials. The Al-GL prepared by the one-pot method proposed in this study offers a novel approach to combining functional nanofillers and substrate materials, providing a theoretical foundation for collagen fiber-based flexible conductive materials.
Collapse
Affiliation(s)
- Ming Teng
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaomin Luo
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Rong Qin
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Jianyan Feng
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Peng Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Peng Wang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaomeng Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xuechuan Wang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| |
Collapse
|
10
|
Han Y, Ruan K, He X, Tang Y, Guo H, Guo Y, Qiu H, Gu J. Highly Thermally Conductive Aramid Nanofiber Composite Films with Synchronous Visible/Infrared Camouflages and Information Encryption. Angew Chem Int Ed Engl 2024; 63:e202401538. [PMID: 38334210 DOI: 10.1002/anie.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The development of highly thermally conductive composites that combine visible light/infrared camouflage and information encryption has been endowed with great significance in facilitating the application of 5G communication technology in military fields. This work uses aramid nanofibers (ANF) as the matrix, hetero-structured silver nanowires@boron nitride nanosheets (AgNWs@BNNS) prepared by in situ growth as fillers, which are combined to fabricate sandwich structured thermally conductive and electrically insulating (BNNS/ANF)-(AgNWs@BNNS)-(BNNS/ANF) (denoted as BAB) composite films by "filtration self-assembly, air spraying, and hot-pressing" method. When the mass ratio of AgNWs@BNNS to BNNS is 1 : 1 and the total mass fraction is 50 wt %, BAB composite film has the maximum in-plane thermal conductivity coefficient (λ∥ of 10.36 W/(m ⋅ K)), excellent electrical insulation (breakdown strength and volume resistivity of 41.5 kV/mm and 1.21×1015 Ω ⋅ cm, respectively) and mechanical properties (tensile strength of 170.9 MPa). 50 wt % BAB composite film could efficiently reduce the equilibrium temperature of the central processing unit (CPU) working at full power, resulting in 7.0 °C lower than that of the CPU solely integrated with ANF directly. In addition, BAB composite film boasts adaptive visible light/infrared dual camouflage properties on cement roads and jungle environments, as well as the function of fast encryption of QR code information within 24 seconds.
Collapse
Affiliation(s)
- Yixin Han
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaoyu He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yongqiang Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
11
|
Yeob J, Hong SW, Koh WG, Park I. Enhanced Mechanical and Thermal Properties of Polyimide Films Using Hydrophobic Fumed Silica Fillers. Polymers (Basel) 2024; 16:297. [PMID: 38276705 PMCID: PMC10820428 DOI: 10.3390/polym16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Polyimide (PI) composite films with enhanced mechanical properties were prepared by incorporating modified fumed silica (FS) particles while preserving their optical and thermal characteristics. The PI matrix was synthesized using a fluorinated diamine, a fluorinated dianhydride, and a rigid biphenyl dianhydride via chemical imidization. Commercially available FS particles, including unmodified FS particles (0-FS) and particles modified with dimethyl (2-FS), trimethyl (3-FS), octyl (8-FS), octamethylcyclotetrasiloxane (D4-FS), and polydimethylsiloxane (PDMS-FS) were used. Scanning electron microscope images and nitrogen adsorption-desorption isotherms revealed well-defined porous structures in the FS particles. The water contact angles on the composite films increased compared to those of the pristine PI films, indicating improved water resistance. The PI/0-FS films exhibited a typical trade-off relationship between tensile modulus and elongation at break, as observed in conventional composites. Owing to the poor compatibility and agglomeration of the PDMS-FS particles, the PI/PDMS-FS composite films exhibited poor mechanical performance and diminished optical characteristics. Although the longer-chained FS particles (8- and D4-FS) improved the tensile modulus of the PI film by up to 12%, a reduction of more than 20% in toughness was observed. The PI composite films containing the methylated FS particles (2- and 3-FS) outperformed 8- and D4-FS in terms of mechanical properties, with PI/3-FS films showing an over 10% increased tensile modulus (from 4.07 to 4.42 GPa) and 15% improved toughness (from 6.97 to 8.04 MJ/m3) at 7 wt. % silica loading. Except for the PI/PDMS-FS composites, all composite film samples exhibited more than 86% transmittance at 550 nm. Regarding thermal properties, the glass transition temperature (Tg) and thermal stability remained stable for most composite films. In addition, PI/3-FS films demonstrated enhanced dimensional stability with lower coefficients of thermal expansion (from 47.3 to 34.5 ppm/°C). Overall, this study highlights the potential of incorporating specific modified FS particles to tailor the mechanical, optical, and thermal properties of PI composite films.
Collapse
Affiliation(s)
- Jongin Yeob
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea;
| | - Sung Woo Hong
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea;
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - In Park
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea;
- KITECH School, University of Science and Technology (UST), 176 Gajeong-dong, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
He Q, Qin M, Zhang H, Yue J, Peng L, Liu G, Feng Y, Feng W. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. MATERIALS HORIZONS 2024; 11:531-544. [PMID: 37982197 DOI: 10.1039/d3mh01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Interface thermal resistance has become a crucial barrier to effective thermal management in high-performance electronics and sensors. The growing complexity of operational conditions, such as irregular and dynamic surfaces, demands thermal interface materials (TIMs) to possess high thermal conductivity and soft elasticity. However, developing materials that simultaneously combine soft elasticity and high thermal conductivity remains a challenging task. Herein, we utilize a vertically oriented graphene aerogel (VGA) and rationally design liquid metal (LM) networks to achieve directional and adjustable pathways within the composite. Subsequently, we leverage the advantages of the low elastic modulus and high deformation capabilities of brush-shaped polydimethylsiloxane (BPDMS), together with the bicontinuous thermal conduction path constructed by VGA and LM networks. Ultimately, the designed composite of patterned liquid metal/vertically oriented graphene aerogel/brush-shaped PDMS (LM-VGA/BPDMS) shows a high thermal conductivity (7.11 W m-1 K-1), an ultra-low elastic modulus (10.13 kPa), excellent resilience, and a low interface thermal resistance (14.1 K mm2 W-1). This LM-VGA/BPDMS soft composite showcases a stable heat dissipation capability at dynamically changing interfaces, as well as excellent adaptability to different irregular surfaces. This strategy holds important application prospects in the fields of interface thermal management and thermal sensing in extremely complex environments.
Collapse
Affiliation(s)
- Qingxia He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Mengmeng Qin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Heng Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Junwei Yue
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Lianqiang Peng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Gejun Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Yiyu Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
13
|
Ran L, Ma X, Qiu L, Sun F, Zhao L, Yi L, Ji X. Liquid metal assisted fabrication of MXene-based films: Toward superior electromagnetic interference shielding and thermal management. J Colloid Interface Sci 2023; 652:705-717. [PMID: 37524621 DOI: 10.1016/j.jcis.2023.07.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The development of thin and flexible films that possess both electromagnetic interference (EMI) shielding and thermal management capabilities has always been an intriguing pursuit, but itisnevertheless a crucialproblemtoaddress. Inspired by the deformability of liquid metal (LM) and film forming capacity of MXene, here we present a series of ternary compositing films prepared via cellulose nanofiber (CNF) assisted vacuum filtration technology. Originating from the highly conductive LM/MXene network, the MLMC film presents a maximum EMI shielding effectiness (EMI SE) of 78 dB at a tiny thickness of 45 μm, together with a high specific EMI SE of 3046 dB mm-1. Meanwhile, these compositing films also deliver excellent flexibility and mechanical reliability, showing no obvious decline in EMI shielding performance even after 1000 bending and 500 folding cycles, respectively. Moreover, notable anisotropic thermal conductive property was successfully achieved, allowing for a highly desirable in-plane thermal conductivity of 7.8 W m-1 K-1. This accomplishment also yielded an exceptional electro-thermal conversion capacity, enabling efficient low-voltage (3 V) heating capabilities. These captivating features are expected to greatly drive the widespread adoption of LM-based films in future flexible electronic and wearable technologies.
Collapse
Affiliation(s)
- Linxin Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Xinguo Ma
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Lijuan Qiu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Furong Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Longfei Yi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China.
| | - Xiaoying Ji
- Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610100, PR China.
| |
Collapse
|
14
|
He Y, Lin X, Feng Y, Wu F, Luo B, Liu M. Non-spherical assemblies of chitin nanocrystals by drop impact assembly. J Colloid Interface Sci 2023; 651:714-725. [PMID: 37567115 DOI: 10.1016/j.jcis.2023.07.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Preparing complex non-spherical assemblies of elongated nanoparticles and exploring their topological conformations is a challenge due to liquid crystals' mobility and elastic distortion. Here, we fabricated a variety of non-spherical liquid crystal assemblies of chitin nanocrystals (ChNCs) in a coagulation bath containing sodium triphosphate (STP) by drop impact assembly method, and the forming mechanism and internal topology were systematically investigated. The collection height, ChNCs concentration, and STP concentration have significant influence on the shape and size of the assembled structures. Long-range ordered structures and long-lived topological textures of the ChNCs liquid crystal can be obtained since a molecular interaction of hydrogen bonding and electrostatic attractions between ChNCs and STP occur during the impact assembly. Rheological and kinetic analysis suggested the shear thinning behavior of the ChNCs liquid crystals and the rapid gelation phenomenon of ChNCs induced by STP. Morphology results showed that the rod-like ChNCs in the non-spherical assemblies were orderly and closely arranged with periodic repetition and layered structure. The non-spherical assemblies of ChNCs liquid crystals can be used as carriers of carbon nanotubes, magnetic Fe3O4 nanoparticles, synthesized polymers, and anticancer drugs for functional composite applications. The drop impact assembly method of ChNCs liquid crystal structure is highly controllable on the composition, morphology, and function, which shows promising applications in energy, environmental-friendly, and bioactive materials.
Collapse
Affiliation(s)
- Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Xiaoying Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Feng Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
15
|
Jia LC, Wang ZX, Wang L, Zeng JF, Du PY, Yue YF, Zhao LH, Jia SL. Self-standing boron nitride bulks enabled by liquid metals for thermal management. MATERIALS HORIZONS 2023; 10:5656-5665. [PMID: 37766462 DOI: 10.1039/d3mh01359f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Thermally conductive materials (TCMs) are highly desirable for thermal management applications to tackle the "overheating" concerns in the electronics industry. Despite recent progress, the development of high performance TCMs integrated with an in-plane thermal conductivity (TC) higher than 50.0 W (m K)-1 and a through-plane TC greater than 10.0 W (m K)-1 is still challenging. Herein, self-standing liquid metal@boron nitride (LM@BN) bulks with ultrahigh in-plane TC and through-plane TC were reported for the first time. In the LM@BN bulks, LM could serve as a bonding and thermal linker among the oriented BN platelets, thus remarkably accelerating heat transfer across the whole system. Benefiting from the formation of a unique structure, the LM@BN bulk achieved an ultrahigh in-plane TC of 82.2 W (m K)-1 and a through-plane TC of 20.6 W (m K)-1, which were among the highest values ever reported for TCMs. Furthermore, the LM@BN bulks exhibited superior compressive and leakage-free performances, with a high compressive strength (5.2 MPa) and without any LM leakage even after being crushed. It was also demonstrated that the excellent TCs of the LM@BN bulks made them effectively cool high-power light emitting diode modules. This work opens up one promising pathway for the development of high-performance TCMs for thermal management in the electronics industry.
Collapse
Affiliation(s)
- Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Xing Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jian-Feng Zeng
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Pei-Yao Du
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yun-Fei Yue
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Li-Hua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shen-Li Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Xiao G, Li H, Yu Z, Niu H, Yao Y. Highly Thermoconductive, Strong Graphene-Based Composite Films by Eliminating Nanosheets Wrinkles. NANO-MICRO LETTERS 2023; 16:17. [PMID: 37975956 PMCID: PMC10656391 DOI: 10.1007/s40820-023-01252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices. However, when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites, capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying, which greatly reduces the thermal conductivity of the composites. Herein, graphene nanosheets/aramid nanofiber (GNS/ANF) composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds and π-π interactions. The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets, thereby creating a fast in-plane heat transfer channel. The composite films (GNS/ANF-60 wt%) with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity (146 W m-1 K-1) and tensile strength (207 MPa). The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones, showing promising applications in the thermal management of high-power electronic devices.
Collapse
Affiliation(s)
- Guang Xiao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Hao Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450052, People's Republic of China
| | - Zhizhou Yu
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Haoting Niu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yagang Yao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
17
|
Ruan K, Shi X, Zhang Y, Guo Y, Zhong X, Gu J. Electric-Field-Induced Alignment of Functionalized Carbon Nanotubes Inside Thermally Conductive Liquid Crystalline Polyimide Composite Films. Angew Chem Int Ed Engl 2023; 62:e202309010. [PMID: 37548313 DOI: 10.1002/anie.202309010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
The positive liquid crystals, 4'-heptyl-4-biphenylcarbonitrile (7CB), are used to functionalize carbon nanotubes (LC-CNT), which can be aligned in the liquid crystalline polyimide (LC-PI) matrix under an alternating electric field to fabricate the thermally conductive LC-CNT/LC-PI composite films. The efficient establishment of thermal conduction pathways in thermally conductive LC-CNT/LC-PI composite films with a low amount of LC-CNT is achieved through the oriented alignment of LC-CNT within the LC-PI matrix. When the mass fraction of LC-CNT is 15 wt %, the in-plane thermal conductivity coefficient (λ∥ ) and the through-plane thermal conductivity coefficient (λ⊥ ) of the LC-CNT/LC-PI composite films reach 4.02 W/(m ⋅ K) and 0.55 W/(m⋅K), which are 90.5 % and 71.9 % higher than those of the intrinsically thermally conductive LC-PI films respectively, also 28.8 % and 5.8 % higher than those of the CNT/LC-PI composite films respectively. Meanwhile, the thermally conductive LC-CNT/LC-PI composite films also possess excellent mechanical and heat resistance properties. The Young's modulus and the heat resistance index are 2.3 GPa and 297.7 °C, respectively, which are higher than the intrinsically thermally conductive LC-PI films and the thermally conductive CNT/LC-PI composite films under the same amount of CNT.
Collapse
Affiliation(s)
- Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 710072 Xi'an, Shaanxi, P. R. China
| | - Xuetao Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 710072 Xi'an, Shaanxi, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, 401135, Chongqing, P. R. China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 710072 Xi'an, Shaanxi, P. R. China
| | - Yongqiang Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 710072 Xi'an, Shaanxi, P. R. China
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Xiao Zhong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 710072 Xi'an, Shaanxi, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 710072 Xi'an, Shaanxi, P. R. China
| |
Collapse
|
18
|
Sun YX, Zou Q, Zhao J, Li XZ, Jiang H, Cai YJ, Yang X, Liu Y, Li YB, Wu YG, Yang ZH, Gai JG. Eco-Friendly Silver Nanoparticles/Chitosan/Poly(vinyl alcohol) Composites Exhibit Remarkable EMI Shielding Capabilities and Outstanding Thermal Conductivities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37436846 DOI: 10.1021/acsami.3c04813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The integration and miniaturization of contemporary electronics have led to significant challenges in dealing with electromagnetic (EM) radiation and heat accumulation. Despite these issues, achieving high thermal conductivity (TC) and electromagnetic interference (EMI) shielding effectiveness (SE) in polymer composite films remains an exceptionally difficult task. In this work, we used a straightforward in situ reduction process and a vacuum-drying method to successfully prepare a flexible Ag NPs/chitosan (CS)/PVA nanocomposite with three-dimensional (3D) conductive and thermally conductive network architectures. The 3D silver pathways formed by attaching to the chitosan fibers endow the material with simultaneous exceptional TC and EMI capabilities. At a silver concentration of 25 vol %, the TC of Ag NPs/CS/PVA nanocomposites reaches 5.18 W·m-1·K-1, exhibiting an approximately 25 times increase compared to CS/PVA composites. The electromagnetic shielding performance of 78.5 dB significantly outperforms the specifications of standard commercial EMI shielding applications by a significant margin. Additionally, Ag NPs/CS/PVA nanocomposites have greatly benefited from microwave absorption (SEA), effectively impeding the transmission of EM waves and reducing the reflected secondary EM wave pollution. Meanwhile, the composite material still maintains good mechanical properties and bendability. This endeavor helped develop malleable and durable composites that possess superior EMI shielding capabilities and intriguing heat dissipation properties using innovative design and fabrication methods.
Collapse
Affiliation(s)
- Yi-Xing Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Qian Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Jing Zhao
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang 111000, Liaoning, China
| | - Xin-Zheng Li
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu 610200, Sichuan, China
| | - Han Jiang
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu 610200, Sichuan, China
| | - Ya-Juan Cai
- Sichuan Guojian Inspection Co., Ltd., No. 17, Section 1, Kangcheng Road, Jiangyang District, Luzhou 646099, Sichuan, China
| | - Xu Yang
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang 111000, Liaoning, China
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Yi-Bo Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Ya-Ge Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Zi-Hao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
19
|
Guo Y, Ruan K, Wang G, Gu J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull (Beijing) 2023:S2095-9273(23)00290-6. [PMID: 37179235 DOI: 10.1016/j.scib.2023.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Polymer composites have essential applications in electronics due to their versatility, stable performance, and processability. However, with the increasing miniaturization and high power of electronics in the 5G era, there are significant challenges related to heat accumulation and electromagnetic wave (EMW) radiation in narrow spaces. Traditional solutions involve using either thermally conductive or EMW absorbing polymer composites, but these fail to meet the demand for multi-functional integrated materials in electronics. Therefore, designing thermal conduction and EMW absorption integrated polymer composites has become essential to solve the problems of heat accumulation and electromagnetic pollution in electronics and adapt to its development trend. Researchers have developed different approaches to fabricate thermal conduction and EMW absorption integrated polymer composites, including integrating functional fillers with both thermal conduction and EMW absorption functions and innovating processing methods. This review summarizes the latest research progress, factors that affect performance, and the mechanisms of thermal conduction and EMW absorption integrated polymer composites. The review also discusses problems that limit the development of these composites and potential solutions and development directions. The aim of this review is to provide references for the development of thermal conduction and EMW absorption integrated polymer composites.
Collapse
Affiliation(s)
- Yongqiang Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
20
|
Zhang Y, Ruan K, Zhou K, Gu J. Controlled Distributed Ti 3 C 2 T x Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211642. [PMID: 36703618 DOI: 10.1002/adma.202211642] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important applications in the fields of 5G communication technology, wearable electronic devices, and artificial intelligence. Based on the design of a porous/multilayered structure and using polyimide (PI) as the matrix and polymethyl methacrylate (PMMA) microspheres as the template, flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite films with controllable pore sizes and distribution of Ti3 C2 Tx hollow microspheres are successfully prepared by sacrificial template method. Owing to the porous/multilayered structure, when the pore size of the Ti3 C2 Tx hollow microspheres is 10 µm and the mass ratio of PMMA/Ti3 C2 Tx is 2:1, the (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film has the most excellent EMI shielding performance, with EMI shielding effectiveness (EMI SE) of 85 dB. It is further verified by finite element simulation that the composite film has an excellent shielding effect on electromagnetic waves. In addition, the composite film has good thermal conductivity (thermal conductivity coefficient of 3.49 W (m·K)-1 ) and mechanical properties (tensile strength of 65.3 MPa). This flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film with excellent EMI shielding performance, thermal conductivity, and mechanical properties has demonstrated great potential for applications in EMI shielding protection for high-power, portable, and wearable flexible electronic devices.
Collapse
Affiliation(s)
- Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
21
|
Guo J, Peng Z, Wang H, Yang L, Zhang L, Li C. Optimization of Flexible Nacre-Like Cellulose Nanofiber Films by a Covalent Overlapping Method: Excellent Thermal Conductivity and Superior Flame Resistance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Chen J, Chen Y, Zhang J, Wang P, Wang D, Ye W, Chen A, Lei C, Yin Z. Design of thermal conductive polymer composites with precisely controlling
graphene nanoplatelets
at the interface of
polypropylene
and
high melt strength polypropylene
via elongation flow. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jiahuan Chen
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Yirong Chen
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Jingjing Zhang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Pengkui Wang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Dehe Wang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Weihong Ye
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Anfu Chen
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Caihong Lei
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Zhansong Yin
- School of Industrial Automation Beijing Institute of Technology Zhuhai 519088 China
| |
Collapse
|
23
|
Cao X, Liu X, Zhu J, Jia Z, Liu J, Wu G. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J Colloid Interface Sci 2023; 634:268-278. [PMID: 36535164 DOI: 10.1016/j.jcis.2022.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS2 magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS2 microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of -48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties.
Collapse
Affiliation(s)
- Xiaolong Cao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiahui Zhu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, Qingdao 266071, PR China.
| | - Jinkun Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
24
|
Nan B, Zhan Y, Xu CA. A review on the thermal conductivity properties of polymer/ nanodiamond nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bingfei Nan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona Spain
| | - Yingjie Zhan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Kwangtung, China
| | - Chang-an Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Kwangtung, China
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Kwangtung, China
| |
Collapse
|
25
|
Significant enhancement of thermal conductivity and EMI shielding performance in PEI composites via constructing 3D microscopic continuous filler network. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
26
|
Han Y, Ruan K, Gu J. Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers. Angew Chem Int Ed Engl 2023; 62:e202216093. [PMID: 36411269 DOI: 10.1002/anie.202216093] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Thermal conduction for electronic equipment has grown in importance in light of the burgeoning of 5G communication. It is imperatively desired to design highly thermally conductive fillers and polymer composite films with prominent Joule heating characteristics and extensive mechanical properties. In this work, "solvothermal & in situ growth" method is carried out to prepare "Fungal tree"-like hetero-structured silver nanowires@boron nitride nanosheet (AgNWs@BNNS) thermally conductive fillers. The thermally conductive AgNWs@BNNS/ANF composite films are obtained by the method of "suction filtration self-assembly and hot-pressing". When the mass fraction of AgNWs@BNNS is 50 wt%, AgNWs@BNNS/ANF composite film presents the optimal thermal conductivity coefficient of 9.44 W/(m ⋅ K) and excellent tensile strength of 136.6 MPa, good temperature-voltage response characteristics, superior electrical stability and reliability, which promise a wide application potential in 5G electronic devices.
Collapse
Affiliation(s)
- Yixin Han
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
27
|
Zhang XD, Zhang ZT, Wang HZ, Cao BY. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3534-3542. [PMID: 36604306 DOI: 10.1021/acsami.2c20713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thermal interface materials (TIMs), as typical thermal functional materials, are highly required to possess both high thermal conductivity and low Young's modulus. However, the naturally synchronized change in the thermal and mechanical properties seriously hinders the development of high-performance TIMs. To tackle such a dilemma, a strategy of codoping solid fillers and liquid metal fillers into polymer substrates is proposed in this study. This strategy includes a large amount of liquid metals that play the role of thermal paths and a small amount of uniformly dispersed solid fillers that further enhance heat conduction. Through the synergistic effect of the liquid metal and solid fillers, the thermal conductivity can be improved, and Young's modulus can be kept small simultaneously. A typical TIM with a volume of 55% gallium-based liquid metal and 15% copper particles as fillers has a thermal conductivity of 3.94 W/(m·K) and a Young's modulus of 699 kPa, which had the maximum thermomechanical performance coefficient compared with liquid metal TIMs and solid filler-doped TIMs. In addition, the thermal conductivity of the solid-liquid metal codoped TIM increased sharply with an increase of liquid metal content, and Young's modulus increased rapidly with an increase of the volume ratio of copper and polymer. The high-low-temperature cycling test and large-size light-emitting diode (LED) application demonstrated that this TIM had stable physical performance. The synergistic effect of the solid fillers and liquid metal fillers provides a broad space to solve the classic tradeoff issue of the mechanical and thermal properties of composites.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Zi-Tong Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Hong-Zhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084, China
| | - Bing-Yang Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| |
Collapse
|
28
|
Qu Y, Cai Y, Huang L, Gao T, Jiang H, Zhang H, Huang ZX, Qu JP. In Situ Exfoliated Polymer/Boron Nitride Thermal Conductors via Hybrid Geometry Induced Local Ball Milling. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuntao Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Yu Cai
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Lijing Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Tianyuan Gao
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Haowei Jiang
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Huanhuan Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhao-xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Jin-ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; and Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
29
|
Zhang C, Bi L, Shi S, Wang H, Zhang D, He Y, Li W. Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding. MATERIALS (BASEL, SWITZERLAND) 2023; 16:680. [PMID: 36676416 PMCID: PMC9865468 DOI: 10.3390/ma16020680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Carbon fiber (CF) composites performance enhancement is a research hotspot at present. In this work, first, a sandwich structure composite, CF@(carbon nanotube/Fe3O4)/epoxy (CF@(CNT/Fe3O4)/EP), is prepared by the free arc dispersion-CFs surface spraying-rolling process method, herein, CFs in the middle layer and (CNT/Fe3O4)/EP as top and substrate layer. Then, CF@(CNT/Fe3O4)/EP (on both sides) and CFs (in the middle) are overlapped by structure design, forming a multilayer CF@(CNT/Fe3O4)/EP-CFs composite with a CFs core sheath. A small amount of CNT/Fe3O4 is consumed, (CNT/Fe3O4)/EP and CFs core sheath realize thermal and electrical anisotropy and directional enhancement, and multilayer sandwich structure makes the electromagnetic interference (EMI) shielding performance better strengthened by multiple absorption-reflection/penetration-reabsorption. From CF-0 to CF-8, CNT/Fe3O4 content only increases by 0.045 wt%, axial thermal conductivity (λ‖) increases from 0.59 W/(m·K) to 1.1 W/(m·K), growth rate is 86%, radial thermal conductivity (λ⟂) only increases by 0.05 W/(m·K), the maximum λ‖/λ⟂ is 2.9, axial electrical conductivity (σ‖) increases from 6.2 S/cm to 7.7 S/cm, growth rate is 24%, radial electrical conductivity (σ⟂) only increases by 0.7 × 10-4 S/cm, the total EMI shielding effectiveness (EMI SET) increases by 196%, from 10.3 dB to 30.5 dB. This provides a new idea for enhancing CFs composite properties.
Collapse
Affiliation(s)
- Chuanqi Zhang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Lansen Bi
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Song Shi
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Huanhuan Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Da Zhang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yan He
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
- Shandong Laboratory for Preparation and Application of High-Performance Carbon Materials, Qingdao 266061, China
- Shandong Collaborative Innovation Center of Intelligent Green Manufacturing Technology and Equipment, Qingdao 266061, China
| | - Wei Li
- Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Sarwar S, Lin MC, Amezaga C, Wei Z, Iyayi E, Polk H, Wang R, Wang H, Zhang X. Ultrasensitive electrochemical biosensors based on zinc sulfide/graphene hybrid for rapid detection of SARS-CoV-2. ADVANCED COMPOSITES AND HYBRID MATERIALS 2023; 6:49. [PMID: 36718472 PMCID: PMC9879254 DOI: 10.1007/s42114-023-00630-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 05/12/2023]
Abstract
UNLABELLED The coronavirus disease 2019 (COVID-19) is a highly contagious and fatal disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In general, the diagnostic tests for COVID-19 are based on the detection of nucleic acid, antibodies, and protein. Among different analytes, the gold standard of the COVID-19 test is the viral nucleic acid detection performed by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. However, the gold standard test is time-consuming and requires expensive instrumentation, as well as trained personnel. Herein, we report an ultrasensitive electrochemical biosensor based on zinc sulfide/graphene (ZnS/graphene) nanocomposite for rapid and direct nucleic acid detection of SARS-CoV-2. We demonstrated a simple one-step route for manufacturing ZnS/graphene by employing an ultrafast (90 s) microwave-based non-equilibrium heating approach. The biosensor assay involves the hybridization of target DNA or RNA samples with probes that are immersed into a redox active electrolyte, which are detectable by electrochemical measurements. In this study, we have performed the tests for synthetic DNA samples and, SARS-CoV-2 standard samples. Experimental results revealed that the proposed biosensor could detect low concentrations of all different SARS-CoV-2 samples, using such as S, ORF 1a, and ORF 1b gene sequences as targets. This microwave-synthesized ZnS/graphene-based biosensor could be reliably used as an on-site, real-time, and rapid diagnostic test for COVID-19. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42114-023-00630-7.
Collapse
Affiliation(s)
- Shatila Sarwar
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849 USA
| | - Mao-Chia Lin
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849 USA
| | - Carolina Amezaga
- Department of Material Engineering, Auburn University, Auburn, AL 36849 USA
| | - Zhen Wei
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Etinosa Iyayi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 USA
| | - Haseena Polk
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 USA
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 USA
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849 USA
| |
Collapse
|
31
|
Zhan Y, Zheng X, Nan B, Lu M, Shi J, Wu K. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Wan B, Yang X, Dong X, Zheng MS, Zhao Q, Zhang H, Chen G, Zha JW. Dynamic Sustainable Polyimide Film Combining Hardness with Softness via a "Mimosa-Like" Bionic Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207451. [PMID: 36281805 DOI: 10.1002/adma.202207451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dielectric polyimides (PIs) are ubiquitous as insulation in electrical power systems and electronic devices. Generally, dynamic polyimide is required to solve irreversible failure processes of electrical or mechanical damage, for example, under high temperature, pressure, and field strength. The challenge lies in the design of the molecular structure of rigid polyimide to achieve dynamic reversibility. Herein, a low-molecular-weight polyimide gene unit is designed to crosslink with polyimide ligase to prepare the smart film. Interestingly, due to the variability of gene unit and ligase combinations, the polyimide films combining hardness with softness are designed into three forms via a "Mimosa-like" bionic strategy to adapt to different application scenarios. Meanwhile, the films have good degradation efficiency, excellent recyclability, and can be self-healable, which makes them reuse. Clearly, the films can be used in the preparation of ultrafast sensors with a response time ≈0.15 s and the application of corona-resistant films with 100% recovery. Furthermore, the construction of polyimide and carbon-fiber-reinforced composites (CFRCs) has been verified to apply to the worse environment. Nicely, the composites have the property of multiple cycles and the non-destructive recycle rate of carbon fiber (CF) is as high as 100%. The design idea of preparing high-strength dynamic polyimide by crosslinking simple polyimide gene unit with ligase could provide a good foundation and a clear case for the sustainable development of electrical and electronic polyimides, from the perspective of Mimosa bionics.
Collapse
Affiliation(s)
- Baoquan Wan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Xing Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Xiaodi Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Ming-Sheng Zheng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Quanliang Zhao
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100041, P. R. China
| | - Hongkuan Zhang
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100041, P. R. China
| | - George Chen
- Department of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jun-Wei Zha
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| |
Collapse
|
33
|
Yoon D, Lee H, Kim T, Song Y, Lee T, Lee J, Hun Seol J. Enhancing the Thermal Conductivity of Amorphous Polyimide by Molecular-scale Manipulation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Zhao J, Wang C, Wang C, Zhang K, Cong B, Yang L, Zhao X, Chen C. Synergistic effects of boron nitride sheets and reduced graphene oxide on reinforcing the thermal conduction,
SERS
performance and thermal property of polyimide composite films. J Appl Polym Sci 2022. [DOI: 10.1002/app.53401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Junyu Zhao
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Chunbo Wang
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun P. R. China
| | - Chengyang Wang
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Ke Zhang
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Bing Cong
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Lan Yang
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Xiaogang Zhao
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Chunhai Chen
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| |
Collapse
|
35
|
Wu T, Xu W, Li X, Du Y, Sheng M, Zhong H, Xie H, Qu J. Bioinspired Micro/Nanostructured Polyethylene/Poly(Ethylene Oxide)/Graphene Films with Robust Superhydrophobicity and Excellent Antireflectivity for Solar-Thermal Power Generation, Thermal Management, and Afterheat Utilization. ACS NANO 2022; 16:16624-16635. [PMID: 36240110 DOI: 10.1021/acsnano.2c06065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rational utilization and circulation of multiple energy sources is an effective way to address the crises of energy shortages and environmental pollution. Herein, microextrusion compression molding, an industrialized polymer molding technology that combines melt blending and compression molding, is proposed for the mass production of a bioinspired micro/nanostructured polyethylene/poly(ethylene oxide)/graphene (MN-PPG) film. The MN-PPG film exhibits robust shape stability, high storage energy density, and excellent thermal management capability owing to the cocontinuous network formed by poly(ethylene oxide) and the polyethylene matrix. The MN-PPG film has sufficient photothermal property due to the uniformly dispersed graphene nanosheets and the bioinspired surface micro/nanostructures. Interestingly, the MN-PPG film surface exhibits durable superhydrophobicity, acid/alkali resistance, and active deicing performance. Further, a multifunctional energy harvesting and circulation system was established by integrating the MN-PPG film, an LED chip, and a thermoelectric module. The hybrid system produced an open-circuit voltage of 315.4 mV and power output of 2.5 W m-2 under 3 sun irradiation. Furthermore, the afterheat generated by the LED chips at night can be converted into electricity through thermoelectric conversion. The proposed method enables the large-scale fabrication of multifunctional phase change composites for energy harvesting in harsh environments.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Wenhua Xu
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong510640, China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Mengjie Sheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Haifei Zhong
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong510640, China
| | - Heng Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong510640, China
| |
Collapse
|
36
|
Peng H, Huang J, Ren H, Xie T, Deng S, Yao X, Lin H. Parallel Structure Enhanced Polysilylaryl-enyne/Ca 0.9La 0.067TiO 3 Composites with Ultra-High Dielectric Constant and Thermal Conductivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45893-45903. [PMID: 36191165 DOI: 10.1021/acsami.2c13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the rapid development of the microwave communication industry, microwave dielectric materials have been widely studied as the medium of signal transmission. Nowadays, with the increase in communication frequency, devices are miniaturized, and dielectric materials are required to have higher dielectric constants. At the same time, the miniaturization of devices brings about an increase in power density, which puts forward higher requirements for the thermal conductivity of materials. In this work, polysilylaryl-enyne (PSAE) and Ca0.9La0.067TiO3 (CLT) were chosen as the matrix and filler, respectively, to construct a parallel model composite through a freeze casting method and a 0-3 model composite through the direct mixing method, respectively. After comparing the microstructures of the two models, their dielectric properties and thermal conductivity were measured and simulated. The parallel model composites in the stable range possess uniform parallel structures, and the solid content limit for them could be as high as 73.2%, which is much higher than that of the 0-3 model composites. While the 0-3 model composite possesses an optimal dielectric constant of 25.4 (@10 GHz) and a thermal conductivity of 0.965 W·m-1·K-1, the parallel model composite possesses a 2 times higher dielectric constant of 76.2 (@10 GHz) and a 1 times higher thermal conductivity of 2.095 W·m-1·K-1. Since the parallel model composite possesses much higher dielectric constant and thermal conductivity than traditional 0-3 model composites, it can be an excellent candidate for microwave communication.
Collapse
Affiliation(s)
- Haiyi Peng
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Jian Huang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, 585 Heshuo Road, Shanghai201800, PR China
| | - Haishen Ren
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Tianyi Xie
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Shifeng Deng
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, Shanghai200237, China
| | - Xiaogang Yao
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Huixing Lin
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| |
Collapse
|
37
|
Bai Y, Zhou S, Lei X, Zou H, Liang M. Enhanced thermal conductivity of polycarbonate‐based composites by constructing a dense filler packing structure consisting of hybrid boron nitride and flake graphite. J Appl Polym Sci 2022. [DOI: 10.1002/app.52895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Bai
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Shengtai Zhou
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Xue Lei
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Huawei Zou
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Mei Liang
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| |
Collapse
|
38
|
Zhong X, Ruan K, Gu J. Enhanced Thermal Conductivities of Liquid Crystal Polyesters from Controlled Structure of Molecular Chains by Introducing Different Dicarboxylic Acid Monomers. Research (Wash D C) 2022; 2022:9805686. [PMID: 35935137 PMCID: PMC9327585 DOI: 10.34133/2022/9805686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Enhancing thermal conductivity coefficient (λ) of liquid crystal polyesters would further widen their application in electronics and electricals. In this work, a kind of biphenyl-based dihydroxy monomer is synthesized using 4, 4'-biphenyl (BP) and triethylene glycol (TEG) as raw material, which further reacts with three different dicarboxylic acids (succinic acid, p-phenylenediacetic acid, and terephthalic acid, respectively) by melt polycondensation to prepare intrinsically highly thermally conductive poly 4', 4”'-[1, 2-ethanediyl-bis(oxy-2, 1-ethanediyloxy)]-bis(p-hydroxybiphenyl) succinate (PEOS), poly 4', 4”'-[1, 2-ethanediyl-bis(oxy-2, 1-ethanediyloxy)]-bis(p-hydroxybiphenyl) p-phenyldiacetate (PEOP) and poly 4', 4”'-[1, 2-ethanediyl-bis(oxy-2, 1-ethanediyloxy)]-bis(p-hydroxybiphenyl) terephthalate (PEOT), collectively called biphenyl-based liquid crystal polyesters (B-LCPE). The results show that B-LCPE possess the desired molecular structure, exhibit smectic phase in liquid crystal range and semicrystalline polymers at room temperature, and possess excellent intrinsic thermal conductivities, thermal stabilities, and mechanical properties. λ of PEOT is 0.51 W/(m·K), significantly exceeds that of polyethylene terephthalate (0.15 W/(m·K)) which has similar molecular structure with PEOT, and also higher than that of PEOS (0.32 W/(m·K)) and PEOP (0.38 W/(m·K)). The corresponding heat resistance index (THRI), elasticity modulus, and hardness of PEOT are 174.6°C, 3.6 GPa, and 154.5 MPa, respectively, and also higher than those of PEOS (162.2°C, 1.8 GPa, and 83.4 MPa) and PEOP (171.8°C, 2.3 GPa, and 149.6 MPa).
Collapse
Affiliation(s)
- Xiao Zhong
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, Guangdong 518057, China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Kunpeng Ruan
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, Guangdong 518057, China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Junwei Gu
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, Guangdong 518057, China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
39
|
Dang J, Zhang J, Li M, Dang L, Gu J. Enhancing intrinsic thermal conductivities of epoxy resins by introducing biphenyl mesogen-containing liquid crystalline co-curing agents. Polym Chem 2022. [DOI: 10.1039/d2py01157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epoxy resins were prepared with an enhanced intrinsic thermal conductivity of 0.42 W (m K)−1 using a biphenyl mesogen-containing co-curing agent.
Collapse
Affiliation(s)
- Jinjin Dang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Junliang Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Mukun Li
- Queen Mary University of London Engineering School, NPU, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Lin Dang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Junwei Gu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| |
Collapse
|