1
|
Tan X, Zhang L, Tan J. Exploiting Seeded RAFT Polymerization for the Preparation of Graft Copolymer Nanoparticles. Macromol Rapid Commun 2025; 46:e2400706. [PMID: 39601477 DOI: 10.1002/marc.202400706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Although seeded reversible addition-fragmentation chain transfer (RAFT) polymerization is explored as a unique method for the preparation of block copolymer nanoparticles with diverse structures, the preparation of nonlinear polymer nanoparticles by seeded RAFT polymerization is rarely reported. Herein, linear block copolymer nanoparticles are first prepared by RAFT dispersion copolymerization of benzyl methacrylate (BzMA) and 2-(2-(n-butyltrithiocarbonate)propionate)ethyl methacrylate (BTPEMA) with different [BzMA]/[BTPEMA] ratios, and employed as seeds for seeded RAFT polymerization of isobornyl acrylate (IBOA) to prepare graft copolymer nanoparticles with different numbers of PIBOA side chains. Comparing with linear triblock copolymers with the same chemical composition, the graft copolymers can promote the formation of higher-order morphologies (e.g., vesicles) under seeded RAFT polymerization conditions. Effects of reaction parameters on the morphology of graft copolymer nanoparticles are investigated in detail, and two morphological phase diagrams are constructed. It is expected that this study will not only expand the scope of seeded RAFT polymerization but also offer new opportunities for the preparation of unique polymer nanoparticles.
Collapse
Affiliation(s)
- Xuesheng Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
2
|
Chen Y, Wang R, Sheng X, Zhang L, Tan J. Degradable and Chain Extendable Segmented Hyperbranched Copolymers by Wavelength-Selective Photoiniferter Polymerization Using a Trithiocarbonate-Derived Dimethacrylate. ACS Macro Lett 2025; 14:72-79. [PMID: 39715460 DOI: 10.1021/acsmacrolett.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization. Switching to blue light irradiation allowed for the chain extension of poly(N,N-dimethylacrylamide) (PDMA) both at the branch points and at the chain ends. Finally, the formed segmented hyperbranched copolymers were explored as macromolecular chain transfer agents to prepare segmented hyperbranched block copolymer nanoparticles via polymerization-induced self-assembly. This study not only leads to new examples of degradable and chain extendable segmented hyperbranched polymers but also provides important insights into the formation of branched polymers via copolymerization of multivinyl monomers.
Collapse
Affiliation(s)
- Yanwen Chen
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Wang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinxin Sheng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
3
|
Yamanaka R, Sugawara-Narutaki A, Takahashi R. Microphase Separation and Gelation through Polymerization-Induced Self-Assembly Using Star Polyethylene Glycols. ACS Macro Lett 2024; 13:1050-1055. [PMID: 39083349 PMCID: PMC11340017 DOI: 10.1021/acsmacrolett.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6]), with a total solute concentration of 40 wt %. While the styrene monomer is soluble in [BMIM][PF6], polystyrene is not; thus, self-assembly and cross-linking (gelation) occur. Structural analysis by small-angle X-ray scattering revealed that a relatively ordered microphase-separated structure for PISA was observed. Two-arm PEG-PS formed hexagonally packed cylinders, whereas 4- and 8-arm PEG-PS exhibited hexagonal close-packed spheres and disordered spheres. The dynamics, studied by oscillatory rheology, were also influenced by the number of arms; the 4-arm star block copolymers showed the highest plateau modulus. This study demonstrates that the topology is an important factor in controlling the microphase-separated structure and mechanical properties when preparing gels through PISA.
Collapse
Affiliation(s)
- Riku Yamanaka
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rintaro Takahashi
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
4
|
Lin W, Jia S, Li Y, Zhang L, Liu H, Tan J. Aqueous RAFT Dispersion Polymerization Mediated by an ω,ω-Macromolecular Chain Transfer Monomer: An Efficient Approach for Amphiphilic Branched Block Copolymers and the Assemblies. ACS Macro Lett 2024; 13:1022-1030. [PMID: 39074066 DOI: 10.1021/acsmacrolett.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Herein, an ω,ω-macromolecular chain transfer monomer (macro-CTM) containing a RAFT (reversible addition-fragmentation chain transfer) group and a methacryloyl group was synthesized and used to mediate photoinitiated RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA) in water. The macro-CTM undergoes a self-condensing vinyl polymerization (SCVP) mechanism under RAFT dispersion polymerization conditions, leading to the formation of amphiphilic branched block copolymers and the assemblies. Compared with RAFT solution polymerization, it was found that the SCVP process was promoted under RAFT dispersion polymerization conditions. Morphologies of branched block copolymer assemblies could be controlled by varying the monomer concentration and the [HPMA]/[macro-CTM] ratio. The branched block copolymer vesicles could be used as seeds for seeded RAFT emulsion polymerization, and framboidal vesicles were successfully obtained. Finally, degrees of branching of branched block copolymers could be further controlled by using a binary mixture of the macro-CTM and a linear macro-RAFT agent or a small molecule CTM. We believe that this study not only provides a versatile strategy for the preparation of branched block copolymer assemblies but also offers important insights into polymer synthesis via heterogeneous RAFT polymerization.
Collapse
Affiliation(s)
- Weihong Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxiang Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
5
|
Xie G, Wu J, Zhang L, Tan J. Efficient Synthesis of μ-A(BC)C Miktoarm Star Polymer Assemblies via Aqueous Photoinitiated Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39088262 DOI: 10.1021/acs.langmuir.4c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In this study, green light-activated photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization of glycerol methacrylate was performed using an ω,ω-heterodifunctional macro-RAFT agent. Because of the different RAFT controllability of two RAFT groups toward methacrylic monomers, only one RAFT group was activated under green light irradiation, leading to the formation of a diblock copolymer macro-RAFT agent with one RAFT group located at the chain end and the other RAFT group located between two blocks. The obtained diblock copolymer macro-RAFT agent was then used to mediate aqueous photoinitiated RAFT dispersion polymerization of diacetone acrylamide (DAAM), which formed μ-A(BC)C miktoarm star polymer assemblies with a diverse set of morphologies. Comparing with the ABC triblock copolymer, it was found that the architecture of the μ-A(BC)C miktoarm star polymer facilitated the formation of higher-order morphologies. Kinetic studies indicated that the aqueous photoinitiated RAFT dispersion polymerization exhibited ultrafast polymerization behavior, with quantitative monomer conversion being achieved within 5 min. Size exclusion chromatography analysis confirmed that good RAFT control was maintained during the polymerization. A morphological phase diagram for μ-A(BC)C miktoarm star polymer assemblies was constructed by varying the monomer concentration and the [DAAM]/[Macro-RAFT] ratio. We expect that this study not only develops an approach for the preparation of miktoarm star polymer assemblies but also provides mechanistic insights into the polymerization-induced self-assembly of nonlinear polymers.
Collapse
Affiliation(s)
- Gangyu Xie
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
6
|
Raji IO, Dodo OJ, Saha NK, Eisenhart M, Miller KM, Whitfield R, Anastasaki A, Konkolewicz D. Network Polymer Properties Engineered Through Polymer Backbone Dispersity and Structure. Angew Chem Int Ed Engl 2024; 63:e202315200. [PMID: 38546541 DOI: 10.1002/anie.202315200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 04/24/2024]
Abstract
Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.
Collapse
Affiliation(s)
- Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Obed J Dodo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Mary Eisenhart
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Kevin M Miller
- Department of Chemistry, Murray State University, Murray, KY 42071, USA
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH, Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH, Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| |
Collapse
|
7
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
8
|
Zhou J, Huang Q, Zhang L, Tan J. Exploiting the Monomer-Feeding Mechanism of RAFT Emulsion Polymerization for Polymerization-Induced Self-Assembly of Asymmetric Divinyl Monomers. ACS Macro Lett 2023; 12:1457-1465. [PMID: 37844283 DOI: 10.1021/acsmacrolett.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We exploited the monomer-feeding mechanism of reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization to achieve the successful polymerization-induced self-assembly (PISA) of asymmetric divinyl monomers. Colloidally stable cross-linked block copolymer nanoparticles with various morphologies, such as vesicles, were directly prepared at high solids. Morphologies of the cross-linked block copolymer nanoparticles could be controlled by varying the monomer concentration, degree of polymerization (DP) of the core-forming block, and length of the macro-RAFT agent. X-ray photoelectron spectroscopy (XPS) characterization confirmed the presence of unreacted vinyl groups within the obtained block copolymer nanoparticles, providing a landscape for further functionalization via thiol-ene chemistry. Finally, the obtained block copolymer nanoparticles were employed as additives to tune the mechanical properties of hydrogels. We expect that this study not only offers considerable opportunities for the preparation of well-defined cross-linked block copolymer nanoparticles, but also provides important insights into the controlled polymerization of multivinyl monomers.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
9
|
Hou W, Wu J, Li Z, Zhang Z, Shi Y, Chen Y. Efficient Synthesis and PISA Behavior of Molecular Bottlebrush Block Copolymers via a Grafting-From Strategy through RAFT Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiasheng Wu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheqi Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Zhang X, Wang P, Xu Y, Wang J, Shi Y, Niu W, Song W, Liu R, Yu CY, Wei H. Facile synthesis and self-assembly behaviors of biodegradable amphiphilic hyperbranched copolymers with reducible poly(caprolactone) grafts. Polym Chem 2022. [DOI: 10.1039/d2py01112c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A reducible hydrophobic macromonomer, HEMA-g-PCL, developed herein provides a facile yet robust strategy for biodegradable amphiphilic hyperbranched copolymers.
Collapse
Affiliation(s)
- Xianshuo Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenxu Niu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenjing Song
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Ruru Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| |
Collapse
|
11
|
Zhang X, Wei Z, Liu K, Wang L, Yang W. A 3B-type miktoarm star polymer nanoassemblies prepared by reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation on a series of A3B-type miktoarm star polymer assemblies by RAFT PISA has revealed the role of A3B architecture in delaying morphological transitions, and the formation of larger vesicles as well as other interesting morphologies.
Collapse
Affiliation(s)
- Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|