1
|
Duan H, Li S, Wu X, Deng J, Li J, Qi D, Zhao B. Solvent-Free Supramolecular Polymerization for Feather-Like Nanostructured Chiral Fluorescent Polyurethanes with Multimodal Chiroptical Stimuli Responsiveness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417572. [PMID: 40019371 PMCID: PMC12021037 DOI: 10.1002/advs.202417572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Chiral supramolecular polymers with stimuli-responsive circularly polarized luminescence (CPL) are highly desirable for smart flexible optoelectronic devices, but remain rarely reported. Here, a simple solvent-free supramolecular polymerization for preparing chiral polyurethanes is presented by in situ induced self-assembly strategy, using cellulose nanocrystals (CNCs)-based isocyanate prepolymers and macromolecular polyols as precursors, achieving precise control over polymer chain assembly with spot-like arrangement. More importantly, by further incorporating a π-conjugated luminescent dihydroxynaphthalene molecule, CPL-active flexible polyurethane films with feather-like nanostructures are constructed, which promote the ordered arrangement of CNCs-based isocyanate segments due to the increased spatial resistance. The π─H bond network between CNCs and urethane-linked benzene rings drives the self-assembly, enabling higher-level chiral amplification and enhanced fluorescence. Interestingly, the prepared chiral fluorescent polyurethanes display multimodal chiroptical stimuli responsiveness under various stimuli, such as temperature, solvent polarity, pH, and polarized light, due to the sensitivity of the π─H bond network. This work offers new insights into designing solvent-free chiral supramolecular polymers with significant chiroptical potentials.
Collapse
Affiliation(s)
- Huimin Duan
- School of Textile Science and Engineering, School of Materials Science and Engineering & School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityZhejiang310018China
- Zhejiang Provincial Innovation Center of Advanced Textile TechnologyZhejiang312000China
- Shaoxing Keqiao Research Institute of Zhejiang Sci‐Tech UniversityZhejiang312000China
| | - Shuli Li
- School of Textile Science and Engineering, School of Materials Science and Engineering & School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityZhejiang310018China
| | - Xinlei Wu
- School of Textile Science and Engineering, School of Materials Science and Engineering & School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityZhejiang310018China
- Zhejiang Provincial Innovation Center of Advanced Textile TechnologyZhejiang312000China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jiawei Li
- School of Textile Science and Engineering, School of Materials Science and Engineering & School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityZhejiang310018China
| | - Dongming Qi
- School of Textile Science and Engineering, School of Materials Science and Engineering & School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityZhejiang310018China
- Zhejiang Provincial Innovation Center of Advanced Textile TechnologyZhejiang312000China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
2
|
Chen J, Yu S, Wu S, Tang Z, Guo B, Zhang L. Molecular Insights into Interfacial Stress Amplification and Network Reinforcement in Extrudable Multiphase Vitrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6353-6363. [PMID: 40009519 DOI: 10.1021/acs.langmuir.5c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Incorporating dynamic covalent bonds (DCBs) into elastomers provides a seminal solution for the upcycling of traditional thermoset elastomers. Recently, engineering a multiphase network with various cross-linking uniformity and phase structures has been proven to be an effective strategy to overcome the bottleneck of continuous and high-throughput recycling (e.g., extrusion reprocessing) of vitrimeric elastomers. However, all of the relevant studies only focused on revealing the influences of network structures on the macroscopic properties of the systems. As for the microscopic mechanism of the multiphase network at the molecular level, it is still lacking. Herein, based on coarse-grained molecular dynamics (CGMD) simulation, a modeled DCBs-cross-linked elastomer with a multiphase network was established, which was subsequently subjected to in situ tensile or shear forces to simulate the evolution of local chain segment motion and stress/strain distributions in various microregions of the network under the complex extrusion/injection force field. The results indicate that phase domains with different cross-link densities feature distinct chain segment motion behavior and local stress/strain distribution evolution during tensile/shear deformation, and the interfacial phase exhibits significant high stresses. Therefore, incorporating heterogeneously cross-linked multiphase networks into elastomeric vitrimers can enable the system to have significant network reinforcement and unique interfacial stress amplification effects, which are critical for determining extrusion/injection reprocessability. Therefore, we envisage that the present study can provide a molecular-level theoretical explanation for the extrusion/injection reprocessability of multiphase elastomeric vitrimers, thereby guiding the rational network/performance design of these seminal materials.
Collapse
Affiliation(s)
- Jialiang Chen
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuangjian Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Siwu Wu
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenghai Tang
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Baochun Guo
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liqun Zhang
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Fan Y, Malyi OI, Wang H, Cheng X, Fu X, Wang J, Ke H, Xia H, Shen Y, Bai Z, Chen S, Shao H, Chen X, Tang Y, Bao X. Surface-Confined Disordered Hydrogen Bonds Enable Efficient Lithium Transport in All-Solid-State PEO-Based Lithium Battery. Angew Chem Int Ed Engl 2025; 64:e202421777. [PMID: 39866035 DOI: 10.1002/anie.202421777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/28/2025]
Abstract
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures. To overcome these challenges, we develop a surface-confined disordered H-bond system with stable donor-acceptor interactions to construct a loosened chain segments/ions arrangement in the bulk phase of PEO-based electrolytes, realizing the crystallization inhibition of PEO, weak coordination of Li+ and entrapment of anions, which are conducive to efficient Li+ transport and stable Li+ deposition. The rationally designed LiFePO4-based ASSLB demonstrates a long cycle-life of over 400 cycles at 1.0 C and 65 °C with a capacity retention rate of 87.5 %, surpassing most of the currently reported polymer-based ASSLBs. This work highlights the importance of confined disordered H-bonds on Li+ transport in an all-solid-state battery system, paving the way for the future design of polymer-based ASSLBs.
Collapse
Affiliation(s)
- You Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | | | - Huicai Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Xiangxin Cheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Xiaobin Fu
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingshu Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- i-Lab, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haifeng Ke
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Huarong Xia
- Innovative Centre for Flexible Devices (iFLEX), School of Material Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Yanbin Shen
- i-Lab, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhengshuai Bai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Shi Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macau
| | - Huaiyu Shao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macau
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Material Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xiaojun Bao
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| |
Collapse
|
4
|
Nie RP, Huang HD, Yan DX, Jia LC, Lei J, Li ZM. Boosting the Actuation Performance of a Dynamic Supramolecular Polyurethane-Urea Elastomer via Kinetic Control. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3982-3994. [PMID: 39762158 DOI: 10.1021/acsami.4c19128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process. Additionally, disulfide (DS) bonds were incorporated as dynamic chemical linkages to effectively heal the mechanical damage in the resulting elastomer (PUUDS). Alteration in processing conditions creates notable differences in the rate of phase separation among the multiphase materials. A faster phase separation rate is associated with a reduced degree of microphase separation, increased spacing within hard domains, a higher proportion of disordered hydrogen bonds, and hydrogen bonding index. These changes synergistically improved the electromechanical properties of the PUUDS elastomers, thereby enhancing their actuation performance. The sample processed under the fastest phase separation condition showed the lowest Young's modulus and a pronounced dielectric response at low frequencies. The electrostriction effect accounts for 89% of the total electromechanical coupling, achieving a significant reduction in the driving voltage during actuation. The maximum actuation strain recorded was 21.6% at an electric field of 45 MV/m. Benefiting from the fully reversible dynamic network, the damaged PUUDS elastomer can be healed and restored to its original elongation at break after 3 h at room temperature. Practical application was demonstrated through the development of a miniature butterfly model constructed from a single-layer PUUDS elastomer, showcasing potential applications in soft robotics. These findings highlight the critical role of kinetic control in optimizing the performance of advanced DEs.
Collapse
Affiliation(s)
- Run-Pan Nie
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zhang Y, Yu X, Wang Y, Wang Z, Hou Q, Fan X. Stretchable, Self-Healable, and Durable Conductive Elastomer Derived from a Rationally Designed Covalently Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4165-4175. [PMID: 39764734 DOI: 10.1021/acsami.4c17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage. Therefore, robust Ag NW-based elastic conductors possessing stretchability, self-healing, and stability are highly desirable and challenging. Here, we present a universal interface tailoring strategy that introduces thiols onto the dynamically cross-linked elastic substrate surface. The surface thiol groups strongly interact with Ag NWs through Ag-S bonds, forming the stable conductive layer on the elastic substrate. At elevated temperatures, the Ag NWs are partially embedded in the surface of the elastic substrate and a buffer layer is formed to release the concentrated stress. As a result, the formed Ag NW-based elastic conductor displays the combination of good conductivity, high stretchability (>1000%), efficient self-healing capability (>95%), and remarkable stability. Besides, the Ag NW-based elastic conductor combining the good properties mentioned above is suitable for fabricating a sensitive and durable strain sensor against cyclic strain. The presented strategy can be considered a versatile and effective route to generating other surface thiol-rich covalently cross-linked elastomers with dynamic disulfide bonds.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaohui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhihong Wang
- Haiyan Hospital of Traditional Chinese Medicine, 279 Chaoyang East Road, Wuyuan Street, Haiyan County, Zhejiang 314399, P. R. China
| | - Qiaozhi Hou
- School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China
| | - Xiaoshan Fan
- School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China
| |
Collapse
|
6
|
Yu N, Cheng B, Liu Y, Wu W, Li RKY, Liang Z, Cheng F, Zhao H. High-Strength and High-Toughness Supramolecular Materials for Self-Healing Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405700. [PMID: 39165189 DOI: 10.1002/smll.202405700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Indexed: 08/22/2024]
Abstract
The development of self-healing materials provides a new opportunity and challenge for advancing triboelectric nanogenerators (TENGs). However, the low strength and low toughness of self-healing triboelectric materials often result in the deformation or breakage of TENG under high mechanical loads, thereby limiting their potential applications. Herein, a new strategy for fabricating self-healing triboelectric materials is reported, which introduces cross-linking networks with hydrogen bonds and metal coordination bonds. The desired high performance can be achieved by simply adjusting the molar ratio of the metal to the ligand. When the molar ratio is 1:2, the tensile strength, toughness, and elongation at break of the material reached 13.7 MPa, 76.9 MJ m-3, and 1321%, respectively. Furthermore, its self-healing efficiency can reach 74% at 70 °C in 6 h. Working in contact-separation mode, the electrical output can reach 164 V, 18.2 µA, 57.5 nC, with a maximum power density of 2.54 W m-2. Notably, even if it is sheared, the electrical output performances of TENG can be completely recovered to the original state. In addition, the developed TENG exhibits excellent output stability over 10 000 contact separation cycles. This study presents a promising approach for the development of stretchable smart generators.
Collapse
Affiliation(s)
- Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Bingxu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 518057, China
| | - Zihui Liang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, 430200, China
| | - Fangchao Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
7
|
Wang R, Chen X, Cheng Y, Ding Z, Ming X, Zhang Y. An Intrinsic Photothermal Supramolecular Hydrogel with Robust Mechanical Strength and NIR-Responsive Shape Memory. Macromol Rapid Commun 2024; 45:e2300737. [PMID: 38521991 DOI: 10.1002/marc.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Indexed: 03/25/2024]
Abstract
Near-infrared (NIR)-triggered shape memory hydrogels with promising mechanical strength hold immense potential in the field of biomedical applications and soft actuators. However, the optical and mechanical properties of currently reported hydrogels usually suffer from limited solubility and dispersion of commonly used photothermal additives in hydrogels, thus restricting their practical implementations. Here,, a set of NIR-responsive shape memory hydrogels synthesized by polyaddition of diisocyanate-terminated poly(ethylene glycol), imidazolidinyl urea (IU), and p-benzoquinone dioxime (BQDO) is reported. The introduction of IU, a hydrogen bond reinforcing factor, significantly enhances the mechanical properties of the hydrogels, allowing for their tunable ranges of the ultimate tensile strength (0.4-2.5 MPa), elongation at break (210-450%), and Young's modulus (190-850 kPa). The unique hydrogels exhibit an intrinsic photothermal effect because of the covalently incorporated photothermal moiety (BQDO), and the photothermal supramolecular hydrogel shows controllable shape memory capabilities characterized by rapid recovery speed and high recovery ratio (>90%). This design provides new possibilities for applying shape memory hydrogels in the field of soft actuators.
Collapse
Affiliation(s)
- Ruyue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xingxing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoqing Ming
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Chen P, Li F, Wang G, Ying B, Chen C, Tian Y, Chen M, Lee KJ, Ying WB, Zhu J. Toward Highly Matching the Dura Mater: A Polyurethane Integrating Biocompatible, Leak-Proof, and Self-Healing Properties. Macromol Biosci 2023; 23:e2300111. [PMID: 37222304 DOI: 10.1002/mabi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Indexed: 05/25/2023]
Abstract
The dura mater is the final barrier against cerebrospinal fluid leakage and plays a crucial role in protecting and supporting the brain and spinal cord. Head trauma, tumor resection and other traumas damage it, requiring artificial dura mater for repair. However, surgical tears are often unavoidable. To address these issues, the ideal artificial dura mater should have biocompatibility, anti-leakage, and self-healing properties. Herein, this work has used biocompatible polycaprolactone diol as the soft segment and introduced dynamic disulfide bonds into the hard segment, achieving a multifunctional polyurethane (LSPU-2), which integrated the above mentioned properties required in surgery. In particular, LSPU-2 matches the mechanical properties of the dura mater and the biocompatibility tests with neuronal cells demonstrate extremely low cytotoxicity and do not cause any negative skin lesions. In addition, the anti-leakage properties of the LSPU-2 are confirmed by the water permeability tester and the 900 mm H2 O static pressure test with artificial cerebrospinal fluid. Due to the disulfide bond exchange and molecular chain mobility, LSPU-2 could be completely self-healed within 115 min at human body temperature. Thus, LSPU-2 comprises one of the most promising potential artificial dura materials, which is essential for the advancement of artificial dura mater and brain surgery.
Collapse
Affiliation(s)
- Pandi Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Fenglong Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guyue Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Chao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Tian
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yoo-Seong, 34134, Republic of Korea
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
9
|
Hou G, Ren R, Shang W, Weng Y, Liu J. Molecular Dynamics Simulation of Polymer Nanocomposites with Supramolecular Network Constructed via Functionalized Polymer End-Grafted Nanoparticles. Polymers (Basel) 2023; 15:3259. [PMID: 37571153 PMCID: PMC10422474 DOI: 10.3390/polym15153259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Since the proposal of self-healing materials, numerous researchers have focused on exploring their potential applications in flexible sensors, bionic robots, satellites, etc. However, there have been few studies on the relationship between the morphology of the dynamic crosslink network and the comprehensive properties of self-healing polymer nanocomposites (PNCs). In this study, we designed a series of modified nanoparticles with different sphericity (η) to establish a supramolecular network, which provide the self-healing ability to PNCs. We analyzed the relationship between the morphology of the supramolecular network and the mechanical performance and self-healing behavior. We observed that as η increased, the distribution of the supramolecular network became more uniform in most cases. Examination of the segment dynamics of polymer chains showed that the completeness of the supramolecular network significantly hindered the mobility of polymer matrix chains. The mechanical performance and self-healing behavior of the PNCs showed that the supramolecular network mainly contributed to the mechanical performance, while the self-healing efficiency was dominated by the variation of η. We observed that appropriate grafting density is the proper way to effectively enhance the mechanical and self-healing performance of PNCs. This study provides a unique guideline for designing and fabricating self-healing PNCs with modified Nanoparticles (NPs).
Collapse
Affiliation(s)
- Guanyi Hou
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Runhan Ren
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Wei Shang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Jun Liu
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
10
|
Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P. Stretchable, Ultratough, and Intrinsically Self-Extinguishing Elastomers with Desirable Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207268. [PMID: 36683185 PMCID: PMC10037964 DOI: 10.1002/advs.202207268] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported. The resultant elastomer shows a large break strain of ≈2260% and a record-high toughness (ca. 460 MJ m-3 ), which arises from its dynamic microphase-separated microstructure resulting in increased entropic elasticity, and strain-hardening at large strains. The elastomer also exhibits a self-extinguishing ability thanks to the presence of both phosphorus-containing units and π-π stacking interactions. Its promising applications as a reliable yet recyclable substrate for strain sensors are demonstrated. The work will help to expedite next-generation sustainable advanced elastomers for flexible electronics and devices applications.
Collapse
Affiliation(s)
- Yijiao Xue
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Jinyou Lin
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Tao Wan
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2502Australia
| | - Yanlong Luo
- College of ScienceNanjing Forestry UniversityNanjing210037China
| | - Zhewen Ma
- Department of Polymer MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Bryan T. Tuten
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Meng Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Pingan Song
- Centre for Future MaterialsUnviersity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUnviersity of Southern QueenslandSpringfield4300Australia
| |
Collapse
|
11
|
Ye T, Fei L, Chen X, Yin Y, Wang C. Mechanoluminescent Device: In Situ Renewable Carbazole Derivatives Sandwiched by Self-Healing Disulfide-Containing Polyurethane for Mechanical Signals Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4623-4634. [PMID: 36644925 DOI: 10.1021/acsami.2c21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mechanoluminescent (ML) materials can emit visible light by utilizing mechanical energy, which shows unique advantages in visual mechanical sensing, displays, and biomechanical monitoring due to the correlation between force stimulation and luminescence intensity. Most organic ML materials exhibit luminescence intensity attenuation, disappearing completely with force stimulation and failing to recover. Here, organic luminogens (Cz-alkyl6) can be synthesized by introducing a soft alkyl chain into the carbazole, which exhibits ML emission with self-assembly units. Furthermore, organic luminogens can be generated repeatedly by simply recrystallizing the fracture crystal in situ after a short thermal treatment (70 °C) within 14 s. More importantly, the quantitative correlation between force pressure and ML intensity has been established by a sandwich-type ML device based on a novel carbazole derivative (Cz-alkyl6). The ML device presents a capacity for detecting mechanical signals up to 13 N according to its ML intensity (≤275 a.u.), exhibiting potential application value in engineering damage detection, anticounterfeiting, and advanced visual mechanical sensing.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang Fei
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunjie Yin
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Bakkali-Hassani C, Berne D, Ladmiral V, Caillol S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|