1
|
Kuang T, Guo H, Guo W, Liu W, Li W, Saeb MR, Vatankhah‐Varnosfaderani M, Sheiko SS. Boosting the Strength and Toughness of Polymer Blends via Ligand-Modulated MOFs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407593. [PMID: 39412093 PMCID: PMC11615806 DOI: 10.1002/advs.202407593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/13/2024] [Indexed: 12/06/2024]
Abstract
Mechanically robust and tough polymeric materials are in high demand for applications ranging from flexible electronics to aerospace. However, achieving both high toughness and strength in polymers remains a significant challenge due to their inherently contradictory nature. Here, a universal strategy for enhancing the toughness and strength of polymer blends using ligand-modulated metal-organic framework (MOF) nanoparticles is presented, which are engineered to have adjustable hydrophilicity and lipophilicity by varying the types and ratios of ligands. Molecular dynamics (MD) simulations demonstrate that these nanoparticles can effectively regulate the interfaces between chemically distinct polymers based on their amphiphilicity. Remarkably, a mere 0.1 wt.% of MOF nanoparticles with optimized amphiphilicity (ML-MOF(5:5)) delivered ≈1.1- and ≈34.1-fold increase in strength and toughness of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS) blend, respectively. Moreover, these amphiphilicity-tailorable MOF nanoparticles universally enhance the mechanical properties of various polymer blends, such as polypropylene (PP)/polyethylene (PE), PP/polystyrene (PS), PLA/poly (butylene adipate-co-terephthalate) (PBAT), and PLA/polycaprolactone (PCL)/PBS. This simple universal method offers significant potential for strengthening and toughening various polymer blends.
Collapse
Affiliation(s)
- Tairong Kuang
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Hongxin Guo
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wei Guo
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wenxian Liu
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wei Li
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD)Hokkaido UniversitySapporo001–0021Japan
- Suzhou LaboratorySuzhouJiangsu215123P. R. China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical ChemistryMedical University of GdańskJ. Hallera 107Gdańsk80–416Poland
| | | | - Sergei S. Sheiko
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
2
|
Li Z, Shang J, Abdurexit A, Jamal R, Abdiryim T, Su E, Wei J. Improving the performance of polylactic acid/polypropylene/cotton stalk fiber composites with epoxidized soybean oil as a high efficiency plasticizer. Int J Biol Macromol 2024; 283:137814. [PMID: 39566775 DOI: 10.1016/j.ijbiomac.2024.137814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Polylactic acid (PLA) can serve as a biodegradable alternative to traditional petroleum-based plastics, but its poor impact resistance and high production costs limit its applications. In this study, different contents of epoxidized epoxy soybean oil (ESO) were added as plasticizer to melt blend with polylactic acid (PLA), polypropylene (PP) and cotton stalk fiber (CSF), examining its impact on the mechanical properties, thermal stability, microstructure, and crystallization behavior of the blends. The results indicated that ESO reacted with PLA and CSF to form branched polymers and microgels. With increasing ESO content, the blends exhibited increased initial thermal decomposition temperature, impact strength, and elongation at break, while stiffness, maximum decomposition rate, and crystallinity decreased. When the mass ratio of CSF to ESO was 2:1, the notch impact strength and elongation at break of PLA/PP/CSF/ESO blends were 1.63 times and 1.98 times higher than those of PLA/PP/CSF blends, respectively. Moreover, a reduction in surface grooves of CSF and formation of a gel layer were observed. Importantly, this study opens an effective new pathway for the utilization of waste natural fibers and the widespread application of biodegradable composite materials, contributing to environmental protection, resource conservation, and cost reduction.
Collapse
Affiliation(s)
- Zhiwei Li
- State Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jin Shang
- State Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Abdukeyum Abdurexit
- State Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Ruxangul Jamal
- State Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Erman Su
- State Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jin Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
3
|
Luo H, Yang X, Ding Q, Sheng B, Deng J, Yan X, Wu Y, Chen H, Hao C, Yuan S, Zeng J, Zhou W. Tensile properties and deformation by different compatibilizers in bio-based polylactide/poly(4-hydroxybutyrate) blends. Int J Biol Macromol 2024; 281:136550. [PMID: 39426776 DOI: 10.1016/j.ijbiomac.2024.136550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Blending chemically synthesized poly(4-hydroxybutyrate) (P4HB) with polylactide (PLLA) can overcome PLLA's brittleness, offering fully biobased blends. However, due to low compatibility between PLLA and P4HB, the influence of compatibilizers on the morphology, structure and tensile deformation of PLLA/P4HB blends remains to be unresolved. This article introduces reactive poly(methyl methacrylate-co-styrene-glycidyl methacrylate) (MSG) and non-reactive polyformaldehyde (POM) compatibilizers to improve the compatibility between P4HB and PLLA, achieving the maximal elongation at break exceeding 300 % at 2 wt% MSG or 3 wt% POM. MSG inhibits PLLA crystallization, extending stress stability in the silver streak stage, while POM enhances crystallization, prolonging the strain-hardening stage. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) analysis show that pristine PLLA forms voids before fracture, and PLLA/P4HB blends cavitate at the yield point and develop crazes in the silver streak stage. MSG effectively transmits stress and delays cavitation, extending the silver streak stage, whereas POM forms a microcrystalline network, lowering the energy barrier for stretching-induced recrystallization. These findings could provide theoretical guidelines on selecting compatibilizers for different PLLA based blends.
Collapse
Affiliation(s)
- Haoqi Luo
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiangyan Yang
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Qingyi Ding
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Bogang Sheng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Jing Deng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiaofei Yan
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Yang Wu
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Han Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Chaowei Hao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042 Qingdao, PR China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, PR China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, PR China.
| | - Weihua Zhou
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China.
| |
Collapse
|
4
|
Zhang Z, Huo S, Yu L, Ye G, Wang C, Zhang Q, Liu Z. A generalizable reactive blending strategy to construct flame-retardant, mechanically-strong and toughened poly(L-lactic acid) bioplastics. Int J Biol Macromol 2024; 265:130806. [PMID: 38484810 DOI: 10.1016/j.ijbiomac.2024.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Poly(L-lactic acid) (PLA) is an environmentally-friendly bioplastic with high mechanical strength, but suffers from inherent flammability and poor toughness. Many tougheners have been reported for PLA, but their synthesis usually involves organic solvents, and they tend to dramatically reduce the mechanical strength and cannot settle the flammability matter. Herein, we develop strong, tough, and flame-retardant PLA composites by reactive blending PLA, 6-((double (2-hydroxyethyl) amino) methyl) dibenzo [c, e] [1,2] oxyphosphate acid 6-oxide (DHDP) and diphenylmethane diisocyanate (MDI) and define it PLA/xGH, where x indicates that the molar ratio of -NCO group in MDI to -OH group in PLA and DHDP is 1.0x: 1. This fabrication requires no solvents. PLA/2GH with a -NCO/-OH molar ratio of 1.02: 1 maintains high tensile strength of 63.0 MPa and achieves a 23.4 % increase in impact strength compared to PLA due to the incorporation of rigid polyurethane chain segment. The vertical combustion (UL-94) classification and limiting oxygen index (LOI) of PLA/2GH reaches V-0 and 29.8 %, respectively, because DHDP and MDI function in gas and condensed phases. This study displays a generalizable strategy to create flame-retardant bioplastics with great mechanical performances by the in-situ formation of P/N-containing polyurethane segment within PLA.
Collapse
Affiliation(s)
- Zimeng Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia; School of Engineering, University of Southern Queensland, Springfield Central 4300, Australia.
| | - Lingfeng Yu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
5
|
Ji G, Sang M, Zhang X, Huang J, Li T, Wang Y, Wang S, Dong W. Soft-hard dual nanophases: a facile strategy for polymer strengthening and toughening. MATERIALS HORIZONS 2024; 11:1426-1434. [PMID: 38264855 DOI: 10.1039/d3mh01763j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymers often face a trade-off between stiffness and extensibility-for example, toughening rigid polymers by incorporating plasticizers or flexible polymers leads to strikingly decreased stiffness. Herein, we circumvent this long-standing tricky dilemma in materials science via constructing soft-hard dual nanophases in polymers. As-fabricated dual-nanophase PLA shows a high yield strength of 69.1 ± 4.4 MPa, a large extensibility of 279.1 ± 25.5%, and a super toughness of 115.2 ± 10.3 MJ m-3, which are 1.2, 48 and 82 times, respectively, those of neat PLA. Combined high stiffness, large ductility, and super toughness are unprecedented for PLA and enable bio-sourced PLA to replace petroleum-based resins such as PP, PET and PC. Besides, soft-hard dual nanophases in polymers are rarely reported due to significant constraints in terms of modifier dispersion/aggregation, interfacial regulation, and processing difficulties. The construction strategy described herein, combining controlled annealing and a well-designed plasticizer, can efficiently construct soft-hard dual nanophases in polymers, which will greatly advance the nanostructure design of polymers. More importantly, the proposed strategy for materials design will be widely applicable to industrial manufacturing in terms of nanophase construction and interfacial optimization due to the simplicity and availability at a large scale. We envision that this work offers an innovative and facile strategy to circumvent the trade-off between stiffness and extensibility and to advance the nanostructure design of high-performance polymers in a manner applicable to industrial manufacturing.
Collapse
Affiliation(s)
- Guangyao Ji
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Mingyu Sang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Shou T, Wu Y, Yin D, Hu S, Wu S, Zhao X, Zhang L. In-situ self-crosslinking strategy for super-tough polylactic acid/ bio-based polyurethane blends. Int J Biol Macromol 2024; 261:129757. [PMID: 38281538 DOI: 10.1016/j.ijbiomac.2024.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
As a bio-based degradable plastic, polylactic acid (PLA) is highly commercialized, but its inherent brittleness limits its widespread use. In-situ polymerization techniques are effective in improving the toughness of PLA. However, the enhancement of the toughening effect in polyurethanes (PUs) through in-situ self-crosslinking still requires improvement and heavily relies on petroleum-derived feedstocks in certain approaches. In this paper, 1,3-polypropanediol (PO3G) of bio-based origin rather than conventional polyols like polyethylene glycol (PEG) and poly propylene glycol (PPG) was used. PLA/PO3G-PU blends were prepared via an in-situ self-crosslinking strategy. With a notch impact and tensile strength of 55.95 kJ/m2 and 47.77 MPa (a retention rate of 68.9 % compared with pure PLA), respectively, PLA/PO3G-PU blends achieved a better balance between stiffness and toughness. This work provides a new option for PLA to achieve a stiffness-toughness balance and get rid of dependence on petrochemical resources.
Collapse
Affiliation(s)
- Tao Shou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaowen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexian Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China; Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
7
|
Xu X, Yu J, Yang F, Li Y, Ou R, Liu Z, Liu T, Wang Q. Preparation of degradable chemically cross-linked polylactic acid films and its application on disposable straws. Int J Biol Macromol 2023; 251:126394. [PMID: 37595700 DOI: 10.1016/j.ijbiomac.2023.126394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The semi-rigidity of the polylactic acid (PLA) molecular chain makes it brittle, poor impact resistance and barrier properties, which severely limits its practical applications. In this paper, a bio-based reactive plasticizer epoxy soybean oil (ESO) was used to improve the mechanical and barrier properties of maleic anhydride grafted polylactic acid (MAPLA) by the chemical reaction between the epoxy and anhydride group. Firstly, the optimum curing conditions were 93.5 °C, 100 °C, and 110.8 °C for 2 h. The effects of different mass fractions of ESO on the properties of MAPLA-ESO (ME) films were systematically investigated. It was found that when the content of ESO was 10 wt%, the tensile properties of the resulting ME films were the best, with a tensile strength of 35.2 MPa. And it had an elongation at break of 20.0 % and toughness of 5.4 MJ/m3, which increased to 690 % and 675 %, respectively, compared with pure MAPLA films. The chemically crosslinked ME films also displayed excellent water resistance, well degradation, low migration properties, and better performance than that of commercial paper straws and PLA straws, exhibiting great application potential as degradable disposable straws. Therefore, this work provides an effective way to develop high-performance, green, and degradable PLA films and products.
Collapse
Affiliation(s)
- Xiaobing Xu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing Yu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Fangfei Yang
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Li
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxian Ou
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Liu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Tao Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingwen Wang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Lee JH, Park CK, Kim SH. Impact fracture mechanism and heat deflection temperature of PLA/PEICT blends reinforced by glass fiber. RSC Adv 2023; 13:22315-22324. [PMID: 37497093 PMCID: PMC10366569 DOI: 10.1039/d3ra03692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
To enhance the crack propagation and initiation properties and heat deflection temperature of poly(lactic acid) (PLA), PLA/poly(1,4-cyclohexanedimethylene isosorbide terephthalate) (PEICT) blend systems were prepared and glass fibers (GF) were incorporated as reinforcements. Due to high shear force during extrusion and injection molding the length of GF was reduced and was oriented towards the flow direction. Although the reinforcing effect of the GF deviated from the theoretical values calculated by the Halpin-Tsai equation, both tensile and flexural properties were greatly enhanced with increasing GF content. Dynamic mechanical and thermal testing showed improved storage modulus throughout the entire temperature range showing outstanding reinforcing ability. By incorporating GF into the PLA/PEICT blend, the crack propagation and initiation properties were enhanced compared to pristine PLA. Such an increase in crack propagation properties was the result of enhanced modulus with the added GF. Moreover, because of the increased modulus, the heat deflection temperatures of the GF reinforced blends were drastically increased showing a value of 91.4 °C at 20 wt% GF loading. The high performance reached by the biomass-based composites developed in this research shows great possibility of replacing these conventional petroleum-based polymer systems.
Collapse
Affiliation(s)
- Joo Hyung Lee
- Department of Organic and Nano Engineering, Hanyang University Seoul 04763 South Korea
- The Research Institute of Industrial Science, Hanyang University Seoul 04763 South Korea
| | - Chang Kyu Park
- Department of Organic and Nano Engineering, Hanyang University Seoul 04763 South Korea
| | - Seong Hun Kim
- Department of Organic and Nano Engineering, Hanyang University Seoul 04763 South Korea
| |
Collapse
|
9
|
Zhang X, Ji G, Gao M, Huang J, Li T, Wang Y, Wang S, Dong W. Designing Strong, Tough, Fluorescent, and UV-Shielding PLA Materials by Incorporating a Phenolic Compound-Based Multifunctional Modifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17268-17278. [PMID: 36961886 DOI: 10.1021/acsami.3c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The realization of high stiffness, high extensibility, and multi-functions for polylactic acid (PLA) is a vital issue for its practical applications. Herein, hydroxyalkylated tannin acid (mTA), a phenolic compound-based modifier with plentiful flat aromatic structures and flexible isopropanol oligomers, is designed and fabricated to act as the multifunctional modifier for PLA. The mTA exhibits the capability of emitting fluorescence and blocking UV light due to the combination of flat aromatic structures and plentiful flexible chains. Besides, mTA with high grafting degree (h-mTA) shows an excellent compatibility to PLA due to the hydrogen bonding interface and the high affinity of grafted isopropanol oligomers to PLA. As a result, the as-prepared PLA/h-mTA20 composite exhibits a strikingly improved extensibility by 61.2 times while maintaining the high yield strength of PLA. Moreover, PLA/h-mTA can serve as a fluorescent material with multi-mode responsiveness as well as a UV-shielding material with high transparency. We envision that this work opens a novel yet facile way to prepare a strong, tough, and multifunctional PLA material with expanded application scopes and will promote the practical applications of phenolic compounds in polymers.
Collapse
Affiliation(s)
- Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guangyao Ji
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengying Gao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
10
|
Design of biodegradable PLA/PBAT blends with balanced toughness and strength via interfacial compatibilization and dynamic vulcanization. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Chen N, Peng C, Chang YC, Li X, Zhang Y, Liu H, Zhang S, Zhang P. Supertough poly(lactic acid)/bio-polyurethane blends fabricated by dynamic self-vulcanization of dual difunctional monomers. Int J Biol Macromol 2022; 222:1314-1325. [DOI: 10.1016/j.ijbiomac.2022.09.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|