1
|
Anderson IC, Gomez DC, Zhang M, Koehler SJ, Figg CA. Catalyzing PET-RAFT Polymerizations Using Inherently Photoactive Zinc Myoglobin. Angew Chem Int Ed Engl 2025; 64:e202414431. [PMID: 39468874 PMCID: PMC11720391 DOI: 10.1002/anie.202414431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Protein photocatalysts provide a modular platform to access new reaction pathways and affect product outcomes, but their use in polymer synthesis is limited because co-catalysts and/or co-reductants are required to complete catalytic cycles. Herein, we report using zinc myoglobin (ZnMb), an inherently photoactive protein, to mediate photoinduced electron/energy transfer (PET) reversible addition-fragmentation chain transfer (RAFT) polymerizations. Using ZnMb as the sole reagent for catalysis, photomediated polymerizations of N,N-dimethylacrylamide in PBS were achieved with predictable molecular weights, dispersity values approaching 1.1, and high chain-end fidelity. We found that initial apparent rate constants of polymerization increased from 4.6×10-5 s-1 for zinc mesoporpyhrin IX (ZnMIX) to 6.5×10-5 s-1 when ZnMIX was incorporated into myoglobin to yield ZnMb, indicating that the protein binding site enhanced catalytic activity. Chain extension reactions comparing ZnMb-mediated RAFT polymerizations to thermally-initiated RAFT polymerizations showed minimal differences in block copolymer molecular weights and dispersities. This work enables studies to elucidate how protein modifications (e.g., secondary structure folding, site-directed mutagenesis, directed evolution) can be used to modulate polymerization outcomes (e.g., selective monomer additions towards sequence control, tacticity control, molar mass distributions).
Collapse
Affiliation(s)
- Ian C. Anderson
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - Darwin C. Gomez
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - Meijing Zhang
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - Stephen J. Koehler
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - C. Adrian Figg
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| |
Collapse
|
2
|
Ma Y, Dreiling RJ, Recker EA, Kim JW, Shankel SL, Hu J, Easley AD, Page ZA, Lambert TH, Fors BP. Multimaterial Thermoset Synthesis: Switching Polymerization Mechanism with Light Dosage. ACS CENTRAL SCIENCE 2024; 10:2125-2131. [PMID: 39634213 PMCID: PMC11613345 DOI: 10.1021/acscentsci.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The synthesis of polymeric thermoset materials with spatially controlled physical properties using readily available resins is a grand challenge. To address this challenge, we developed a photoinitiated polymerization method that enables the spatial switching of radical and cationic polymerizations by controlling the dosage of monochromatic light. This method, which we call Switching Polymerizations by Light Titration (SPLiT), leverages the use of substoichiometric amounts of a photobuffer in combination with traditional photoacid generators. Upon exposure to a low dose of light, the photobuffer inhibits the cationic polymerization, while radical polymerization is initiated. With an increased light dosage, the buffer system saturates, leading to the formation of a strong acid that initiates a cationic polymerization of the dormant monomer. Applying this strategy, patterning is achieved by spatially varying light dosage via irradiation time or intensity allowing for simple construction of multimaterial thermosets. Importantly, by the addition of an inexpensive photobuffer, such as tetrabutylammonium chloride, commercially available resins can be implemented in grayscale vat photopolymerization 3D printing to prepare sophisticated multimodulus constructs.
Collapse
Affiliation(s)
- Yuting Ma
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Reagan J. Dreiling
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth A. Recker
- Department
of Chemical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Ji-Won Kim
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Shelby L. Shankel
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Jenny Hu
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Alexandra D. Easley
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Zachariah A. Page
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Tristan H. Lambert
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Brett P. Fors
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Pan X, Li J, Li Z, Li Q, Pan X, Zhang Z, Zhu J. Tuning the Mechanical Properties of 3D-printed Objects by the RAFT Process: From Chain-Growth to Step-Growth. Angew Chem Int Ed Engl 2024; 63:e202318564. [PMID: 38230985 DOI: 10.1002/anie.202318564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Photoinduced 3D printing based on the reversible addition-fragmentation chain transfer (RAFT) process has emerged as a robust method for creating diverse functional materials. However, achieving precise control over the mechanical properties of these printed objects remains a critical challenge for practical application. Here, we demonstrated a RAFT step-growth polymerization of a bifunctional xanthate and bifunctional vinyl acetate. Additionally, we demonstrated photoinduced 3D printing through RAFT step-growth polymerization with a tetrafunctional xanthate and a bifunctional vinyl acetate. By adjusting the molar ratio of the components in the printing resins, we finely tuned the polymerization mechanism from step-growth to chain-growth. This adjustment resulted in a remarkable range of tunable Young's moduli, ranging from 7.6 MPa to 997.1 MPa. Moreover, post-functionalization and polymer welding of the printed objects with varying mechanical properties opens up a promising way to produce tailor-made materials with specific and tunable properties.
Collapse
Affiliation(s)
- Xiaofeng Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhuang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
5
|
Zhao B, Li J, Li G, Yang X, Lu S, Pan X, Zhu J. Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207637. [PMID: 36707417 DOI: 10.1002/smll.202207637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The application of reversible deactivation radical polymerization techniques in 3D printing is emerging as a powerful method to build "living" polymer networks, which can be easily postmodified with various functionalities. However, the building speed of these systems is still limited compared to commercial systems. Herein, a digital light processing (DLP)-based 3D printing system via photoinduced free radical-promoted cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers, which can build "living" objects by a commercial DLP 3D printer at a relatively fast building speed (12.99 cm h-1 ), is reported. The polymerization behavior and printing conditions are studied in detail. The livingness of the printed objects is demonstrated by spatially controlled postmodification with a fluorescent monomer.
Collapse
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangliang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinrui Yang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shaopu Lu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Kinetics of Polymer Network Formation by Nitroxide-Mediated Radical Copolymerization of Styrene/Divinylbenzene in Supercritical Carbon Dioxide. Processes (Basel) 2022. [DOI: 10.3390/pr10112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kinetics of nitroxide-mediated dispersion copolymerization with crosslinking of styrene (STY) and divinylbenzene (DVB) in supercritical carbon dioxide (scCO2) is addressed experimentally. 2,2,6,6-Tetramethylpiperidinyl-1-oxy (TEMPO) and dibenzoyl peroxide (BPO) were used as nitroxide controller and initiator, respectively. A high-pressure cell with lateral sapphire windows at 120 °C and 207 bar was used to carry out the polymerizations. The nitroxide-mediated homopolymerization (NMP) of STY, as well as the conventional radical copolymerization (FRC) of STY/DVB, at the same conditions were also carried out as reference and for comparison purposes. The effect of nitroxide content on polymerization rate, evolution of molecular weight averages, gel fraction, and swelling index was studied.
Collapse
|