1
|
Laswick Z, Wu X, Surendran A, Zhou Z, Ji X, Matrone GM, Leong WL, Rivnay J. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15:6309. [PMID: 39060249 PMCID: PMC11282299 DOI: 10.1038/s41467-024-50496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device's on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
Collapse
Affiliation(s)
- Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
2
|
Liu T, Heimonen J, Zhang Q, Yang CY, Huang JD, Wu HY, Stoeckel MA, van der Pol TPA, Li Y, Jeong SY, Marks A, Wang XY, Puttisong Y, Shimolo AY, Liu X, Zhang S, Li Q, Massetti M, Chen WM, Woo HY, Pei J, McCulloch I, Gao F, Fahlman M, Kroon R, Fabiano S. Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers. Nat Commun 2023; 14:8454. [PMID: 38114560 PMCID: PMC10730874 DOI: 10.1038/s41467-023-44153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.
Collapse
Affiliation(s)
- Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Johanna Heimonen
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Qilun Zhang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Tom P A van der Pol
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Yuxuan Li
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuttapoom Puttisong
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Asaminew Y Shimolo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Silan Zhang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Matteo Massetti
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Weimin M Chen
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Feng Gao
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
| |
Collapse
|