1
|
Zhang SC, Hou Y, Chen SM, He Z, Wang ZY, Zhu Y, Wu H, Gao HL, Yu SH. Highly Regular Layered Structure via Dual-Spatially-Confined Alignment of Nanosheets Enables High-Performance Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405682. [PMID: 38877752 DOI: 10.1002/adma.202405682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Assembling ultrathin nanosheets into layered structure represents one promising way to fabricate high-performance nanocomposites. However, how to minimize the internal defects of the layered assemblies to fully exploit the intrinsic mechanical superiority of nanosheets remains challenging. Here, a dual-scale spatially confined strategy for the co-assembly of ultrathin nanosheets with different aspect ratios into a near-perfect layered structure is developed. Large-aspect-ratio (LAR) nanosheets are aligned due to the microscale confined space of a flat microfluidic channel, small-aspect-ratio (SAR) nanosheets are aligned due to the nanoscale confined space between adjacent LAR nanosheets. During this co-assembly process, SAR nanosheets can flatten LAR nanosheets, thus reducing wrinkles and pores of the assemblies. Benefiting from the precise alignment (orientation degree of 90.74%) of different-sized nanosheets, efficient stress transfer between nanosheets and interlayer matrix is achieved, resulting in layered nanocomposites with multiscale mechanical enhancement and superior fatigue durability (100 000 bending cycles). The proposed co-assembly strategy can be used to orderly integrate high-quality nanosheets with different sizes or diverse functions toward high-performance or multifunctional nanocomposites.
Collapse
Affiliation(s)
- Si-Chao Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen He
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials (I2M), Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ze-Yu Wang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials (I2M), Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Espíndola SP, Norder B, Jansen KMB, Zlopasa J, Picken SJ. Affine Deformation and Self-Assembly Alignment in Hydrogel Nanocomposites. Macromolecules 2023; 56:9839-9852. [PMID: 38105930 PMCID: PMC10720479 DOI: 10.1021/acs.macromol.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Tailoring the order in hierarchical structures is a key goal of bioinspired nanocomposite design. Recently, nacre-like materials have been developed by solvent evaporation methods that are scalable and attain advanced functionalities. However, understanding the alignment mechanisms of 2D fillers, nanosheets, or platelets remains challenging. This work explores possible pathways for nanocomposite ordering via orientation distribution functions. We demonstrate how the immobilization of 2D materials via (pseudo)network formation is crucial to alignment based on evaporation. We show a modified affine deformation model that describes such evaporative methods. In this, a gel network develops enough yield stress and uniformly deforms as drying proceeds, along with the immobilized particles, causing an in-plane orientation. Herein, we tested the dominance of this approach by using a thermo-reversible gel for rapid montmorillonite (MMT) particle fixation. We researched gelatin/MMT as a model system to investigate the effects of high loadings, orientational order, and aspect ratio. The nacre-like nanocomposites showed a semiconstant order parameter (⟨P2⟩ ∼ 0.7) over increasing nanofiller content up to 64 vol % filler. This remarkable alignment resulted in continuously improved mechanical and water vapor barrier properties over unusually large filler fractions. Some variations in stiffness and diffusion properties were observed, possibly correlated to the applied drying conditions of the hybrid hydrogels. The affine deformation strategy holds promise for developing next-generation advanced materials with tailored properties even at (very) high filler loadings. Furthermore, a gelling approach offers the advantages of simplicity and versatility in the formulation of the components, which is useful for large-scale fabrication methods.
Collapse
Affiliation(s)
- Suellen Pereira Espíndola
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ben Norder
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Kaspar M. B. Jansen
- Department
of Sustainable Design Engineering, Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The
Netherlands
| | - Jure Zlopasa
- Department
of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stephen J. Picken
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
3
|
Abu Elella MH, Goda ES, Abdallah HM, Abdel-Aziz MM, Gamal H. Green engineering of TMC-CMS nanoparticles decorated graphene sheets for targeting M. tuberculosis. Carbohydr Polym 2023; 303:120443. [PMID: 36657855 DOI: 10.1016/j.carbpol.2022.120443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Our current work intends to primarily engineer a new type of antibacterial composite by preparing a highly biocompatible graphene sheet decorated with TMC-CMS IPNs nanoparticles utilizing one-pot, green, cost-effective ultrasonication approach. The microstructure of as-formed materials was chemically confirmed using various analytical techniques such as 1H-NMR, FTIR, UV/vis, SEM, and TEM. TEM data has proved the formation of uniformly distributed TCNPs on graphene surfaces with a small particle size of ~22 nm compared with that of pure nanoparticles (~30 nm). The inhibitory activity of these developed materials was examined against the growth of three different M. tuberculosis pathogens and in a comparison with the isoniazid drug as a standard anti-tuberculosis drug. The TCNPs@GRP composite attained MIC values of 0.98, 3.9, and 7.81 μg/mL for inhibiting the growth of sensitive, MDR, and XDR M. tuberculosis pathogens compared to the bare TCNPs (7.81, 31.25, >125 μg/mL) and the isoniazid drug (0.24, 0, 0 μg/mL), respectively. This reveals a considerable synergism in the antituberculosis activity between TCNPs and graphene nanosheets. Cytotoxicity of the TCNPs@GRP was examined against normal lung cell lines (WI38) and was found to have cell viability of 100% with the concentration range of 0.98-7.81 μg/mL.
Collapse
Affiliation(s)
| | - Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt.
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research Center, Dokki, Giza 12622, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Heba Gamal
- Home Economy Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Deng T, Xu B, Zhang L, Li C. Bottlebrush Polymer-Functionalized Graphene Oxide-Based Multifunctional Poly(vinyl alcohol) Nanocomposite Films with Exceptional Performance. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| | - Binbin Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
5
|
Wang L, Zhang X, Xia Y, Zhao X, Xue Z, Sui K, Dong X, Wang D. Cooking-Inspired Versatile Design of an Ultrastrong and Tough Polysaccharide Hydrogel through Programmed Supramolecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902381. [PMID: 31441144 DOI: 10.1002/adma.201902381] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Simultaneously achieving strength and toughness in soft materials remains a challenge, especially for physically crosslinked hydrogels with many inactive interaction sites. In this work, inspired by the cooking of thick soup in China, a facile method that includes free water evaporation of the diluted pregel solution followed by crosslinking (WEC) is proposed to fabricate polysaccharide hydrogels. Herein, without the constraints of viscosity and crosslinking, polymer chains can homogenously approach as much as possible, thereby enabling the transformation of inactive supramolecular interaction (H-bonding and ionic coordination) sites into active sites until reaching the maximum level. Through facilely tuning the concentrating degree, programmed supramolecular interactions, serving as energy-dissipating sacrificial bonds, impart the hydrogels with strength and toughness over a very wide range, where a "ductile-to-tough" transition is discovered to occur first. Using WEC in alginate, the concentration can be as high as 25 wt% without sacrificing processing ability, a result that is significantly beyond common value (3-7 wt%), and the extremely stiff and tough hydrogels are obtained, superior to isotropic alginate hydrogels ever reported. This research offers a facile and versatile strategy to fabricate isotropic polysaccharide hydrogels, which become ideal matrix materials for further fabrication of hybrid or anisotropic hydrogels.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiansheng Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xianwei Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhixin Xue
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ. Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. Biomacromolecules 2018; 19:2014-2022. [DOI: 10.1021/acs.biomac.8b00123] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xueyu Dou
- Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohong Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yeqiang Tan
- Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin He
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Kunyan Sui
- Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Kang M, Oderinde O, Deng Y, Liu S, Yao F, Fu G. Characterization and study of luminescence enhancement behaviour of alginate-based hydrogels. NEW J CHEM 2018. [DOI: 10.1039/c8nj03004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Luminescence enhanced composites were fabricated via introducing 5-sulfosalicylic acid molecules into a Tb(iii)-based system to avoid being quenched by water.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Yaoyao Deng
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Shunli Liu
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Fang Yao
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| |
Collapse
|
8
|
Sharma S, Pujari P. Role of free volume characteristics of polymer matrix in bulk physical properties of polymer nanocomposites: A review of positron annihilation lifetime studies. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Yan X, Li F, Hu KD, Xue J, Pan XF, He T, Dong L, Wang XY, Wu YD, Song YH, Xu WP, Lu Y. Nacre-mimic Reinforced Ag@reduced Graphene Oxide-Sodium Alginate Composite Film for Wound Healing. Sci Rep 2017; 7:13851. [PMID: 29062048 PMCID: PMC5653744 DOI: 10.1038/s41598-017-14191-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023] Open
Abstract
With the emerging of drug-resistant bacterial and fungal pathogens, there raise the interest of utilizing versatile antimicrobial biomaterials to treat the acute wound. Herein, we report the spraying mediated assembly of a bio-inspired Ag@reduced graphene-sodium alginate (AGSA) composite film for effective wound healing. The obtained film displayed lamellar microstructures similar to the typical “brick-and-mortar” structure in nacre. In this nacre-mimic structure, there are abundant interfacial interactions between nanosheets and polymeric matrix, leading to remarkable reinforcement. As a result, the tensile strength, toughness and Young’s modulus have been improved 2.8, 2.3 and 2.7 times compared with pure sodium alginate film, respectively. In the wound healing study, the AGSA film showed effective antimicrobial activities towards Pseudomonas aeruginosa, Escherichia coli and Candida albicans, demonstrating the ability of protecting wound from pathogenic microbial infections. Furthermore, in vivo experiments on rats suggested the effect of AGSA film in promoting the recovery of wound sites. According to MTT assays, heamolysis evaluation and in vivo toxicity assessment, the composite film could be applied as a bio-compatible material in vitro and in vivo. Results from this work indicated such AGSA film has promising performance for wound healing and suggested great potential for nacre-mimic biomaterials in tissue engineering applications.
Collapse
Affiliation(s)
- Xu Yan
- Department of Pharmacy, Anhui Province Hospital, Hefei, Anhui, 230001, P. R. China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China
| | - Fei Li
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Kang-Di Hu
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jingzhe Xue
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Xiao-Feng Pan
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Liang Dong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiang-Ying Wang
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ya-Dong Wu
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yong-Hong Song
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wei-Ping Xu
- Department of Pharmacy, Anhui Province Hospital, Hefei, Anhui, 230001, P. R. China. .,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China.
| | - Yang Lu
- School of Chemistry and Chemical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
| |
Collapse
|
10
|
Castelletto V, Kaur A, Hamley I, Barnes RH, Karatzas KA, Hermida-Merino D, Swioklo S, Connon CJ, Stasiak J, Reza M, Ruokolainen J. Hybrid membrane biomaterials from self-assembly in polysaccharide and peptide amphiphile mixtures: controllable structural and mechanical properties and antimicrobial activity. RSC Adv 2017. [DOI: 10.1039/c6ra27244d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macroscopic capsules, with tunable properties based on hierarchical self-assembly on multiple lengthscales, are prepared from the co-operative self-assembly of polysaccharide and peptide amphiphiles.
Collapse
Affiliation(s)
- V. Castelletto
- School of Chemistry, Pharmacy and Food Biosciences
- University of Reading
- Reading RG6 6AD
- UK
| | - A. Kaur
- School of Chemistry, Pharmacy and Food Biosciences
- University of Reading
- Reading RG6 6AD
- UK
| | - I. W. Hamley
- School of Chemistry, Pharmacy and Food Biosciences
- University of Reading
- Reading RG6 6AD
- UK
| | - R. H. Barnes
- School of Chemistry, Pharmacy and Food Biosciences
- University of Reading
- Reading RG6 6AD
- UK
| | - K.-A. Karatzas
- School of Chemistry, Pharmacy and Food Biosciences
- University of Reading
- Reading RG6 6AD
- UK
| | | | - S. Swioklo
- Institute of Genetic Medicine
- Newcastle University
- International Centre for Life
- Newcastle upon Tyne NE1 3BZ
- UK
| | - C. J. Connon
- Institute of Genetic Medicine
- Newcastle University
- International Centre for Life
- Newcastle upon Tyne NE1 3BZ
- UK
| | - J. Stasiak
- Department of Chemical Engineering and Biotechnology
- Cambridge CB2 3RA
- UK
| | - M. Reza
- Department of Applied Physics
- Aalto University School of Science
- FI-00076 Aalto
- Finland
| | - J. Ruokolainen
- Department of Applied Physics
- Aalto University School of Science
- FI-00076 Aalto
- Finland
| |
Collapse
|
11
|
Hamley IW, Castelletto V. Self-Assembly of Peptide Bioconjugates: Selected Recent Research Highlights. Bioconjug Chem 2016; 28:731-739. [DOI: 10.1021/acs.bioconjchem.6b00284] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| |
Collapse
|