1
|
Kang S, Lee J, Yoon H, Jang J, Kim E, Kim JK. Tetragonally Packed Inverted Cylindrical Microdomains from Binary Block Copolymer Blends with Enhanced Hydrogen Bonding. ACS Macro Lett 2023:915-920. [PMID: 37363940 DOI: 10.1021/acsmacrolett.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hexagonally packed (HEX) cylindrical microdomains can be obtained through the self-assembly of block copolymers (BCPs) with a moderately asymmetric volume fraction of one block (f), resulting in the formation of minor cylinders. However, for next-generation lithography and high-density memory devices, it is desirable to obtain densely and tetragonally packed inverted cylindrical microdomains, which are composed of the major block in the minor matrix. The inverted cylinders differ from conventional HEX cylinders, which consist of the minor block in the matrix of the major block. In this study, we achieved this objective by utilizing a binary blend of a polystyrene-b-poly(4-vinylpyridine) copolymer (S4VP) and polystyrene-b-poly(4-hydroxystyrene) copolymer (SHS), where the P4VP block exhibited a strong hydrogen bonding interaction with the PHS block. By carefully controlling the molecular weight ratio of S4VP and SHS as well as the blend composition, we successfully observed tetragonally packed inverted PS cylinders with a square cross-section at a volume fraction of PS of 0.69.
Collapse
Affiliation(s)
- Sukwon Kang
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeongkeon Yoon
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junho Jang
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunyoung Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
2
|
Ding SP, Zhang ZK, Ye Z, Xia DL, Xu JT. Electrostatic crosslinking-enabled highly asymmetric lamellar nanostructures of polyzwitterionic block copolymers for lithography. NANOSCALE 2023; 15:4553-4560. [PMID: 36757829 DOI: 10.1039/d3nr00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For the bulk self-assembly of traditional diblock copolymers (di-BCPs), lamellar structures only occur when two constituents have similar volume fractions (f) and two alternating layers tend to have similar thicknesses. Highly asymmetric lamellar (A-LAM) structures, in which the thickness of one layer is several times higher than the other, are hardly formed in di-BCPs, while they have potential applications in nanolithography. In this work, A-LAM structures with different dimensions were constructed using a type of simple linear di-BCP, polystyrene-b-poly(4-vinylpyridine)propane-1-sulfonate (PS-b-PVPS) with the polyzwitterionic block PVPS in minority. The origin of the A-LAM structure was ascribed to the electrostatic crosslinking and confirmed by doping PS-b-PVPS block copolymers (BCPs) with N-butyl pyridinium methane sulfonate (BPMS). The morphology of compositionally asymmetric PS-b-PVPS BCPs changed from A-LAM to cylindrical structures upon salt-doping, i.e. the phase behavior of common BCPs was recovered. In addition, the morphologies of PS-b-PVPS BCPs with similar molecular weights but varied compositions were also studied, and only two kinds of structures (lamellar or ill-defined spherical structure) were observed when the volume fraction of PVPS (fPVPS) was less than 0.5, and the composition range for the formation of the lamellar structure was found to be fPVPS ≥ 0.188.
Collapse
Affiliation(s)
- Shi-Peng Ding
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ze-Kun Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ze Ye
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ding-Li Xia
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun-Ting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Hydrogen bonding induced microphase and macrophase separations in binary block copolymer blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Li Q, Woo D, Kim JK, Li W. Truly “Inverted” Cylinders and Spheres Formed in the A(AB) 3/AC Blends of B/C Hydrogen Bonding Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingyun Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Dokyung Woo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin-Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
5
|
Kang S, Lee J, Kim E, Seo Y, Choi C, Kim JK. Inverted Cylindrical Microdomains from Binary Block Copolymer Blends Capable of Hydrogen Bonding. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sukwon Kang
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunyoung Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
6
|
Kuo S. Hydrogen bonding mediated
self‐assembled
structures from block copolymer mixtures to mesoporous materials. POLYM INT 2021. [DOI: 10.1002/pi.6264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shiao‐Wei Kuo
- Department of Materials and Optoelectronic Science Center of Crystal Research, National Sun Yat‐Sen University Kaohsiung Taiwan
| |
Collapse
|
7
|
Shin N, Ahn S, Kim E, Kim EY, Park SY, Lee J, Kim JK. Nucleobase-Containing Block Copolymers Having a High Interaction Parameter by Complementary Hydrogen Bonding. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nari Shin
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seonghyeon Ahn
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunsoel Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eun Young Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - So Yeong Park
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
8
|
Seo Y, Park SY, Lee J, Kim JK, Duan C, Li W. Inverted Cylindrical Microdomains by Blending Star-Shaped and Linear Block Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - So Yeong Park
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Chao Duan
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Anderson ER, Daga VK, Gido SP, Watkins JJ. Hydrogen bond mediated self‐assembly of two diblock copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eric R. Anderson
- Department of Polymer Science and Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - Vikram K. Daga
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - Samuel P. Gido
- Department of Polymer Science and Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - James J. Watkins
- Department of Polymer Science and Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
10
|
Choi C, Ahn S, Kim JK. Diverse Morphologies of Block Copolymers by Blending with Homo (and Co) Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
High-Molecular-Weight PLA- b-PEO- b-PLA Triblock Copolymer Templated Large Mesoporous Carbons for Supercapacitors and CO 2 Capture. Polymers (Basel) 2020; 12:polym12051193. [PMID: 32456231 PMCID: PMC7284743 DOI: 10.3390/polym12051193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
High-molecular-weight PLA440-b-PEO454-b-PLA440 (LEL) triblock copolymer was synthesized through simple ring-opening polymerization (ROP) by using the commercial homopolymer HO-PEO454-OH as the macro-initiator. The material acted as a single template to prepare the large mesoporous carbons by using resol-type phenolic resin as a carbon source. Self-assembled structures of phenolic/LEL blends mediated by hydrogen bonding interaction were determined by FTIR and SAXS analyses. Through thermal curing and carbonization procedures, large mesoporous carbons (>50 nm) with a cylindrical structure and high surface area (>600 m2/g) were obtained because the OH units of phenolics prefer to interact with PEO block rather than PLA block, as determined by FTIR spectroscopy. Furthermore, higher CO2 capture and good energy storage performance were observed for this large mesoporous carbon, confirming that the proposed approach provides an easy method for the preparation of large mesoporous materials.
Collapse
|
12
|
Hung WS, Ahmed MMM, Mohamed MG, Kuo SW. Competing hydrogen bonding produces mesoporous/macroporous carbons templated by a high-molecular-weight poly(caprolactone–b–ethylene oxide–b–caprolactone) triblock copolymer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02154-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Alternating crystalline lamellar structures from thermodynamically miscible poly(ε-caprolactone) H/D blends. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wang CC, Wu KH, Lo CT. Chain Architecture and Hydrogen Bonding Induced Co-Ordering and Segregation of Block Copolymer/Graft Copolymer Blends. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chia-Chen Wang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Kuang-Hsin Wu
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Chieh-Tsung Lo
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
15
|
Kennemur JG. Poly(vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01661] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
16
|
Ahn S, Kim JK, Zhao B, Duan C, Li W. Morphology Transitions of Linear A1B1A2B2 Tetrablock Copolymers at Symmetric Overall Volume Fraction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seonghyeon Ahn
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Bin Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Chao Duan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Shieh YT, Lin PY, Kuo SW. Sequence length distribution affects the lower critical solution temperature, glass transition temperature, and CO2-responsiveness of N-isopropylacrylamide/methacrylic acid copolymers. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Tsai CC, Gan Z, Chen T, Kuo SW. Competitive Hydrogen Bonding Interactions Influence the Secondary and Hierarchical Self-Assembled Structures of Polypeptide-Based Triblock Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Cheng-Chang Tsai
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Zhihua Gan
- State Key Laboratory of Organic−Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Chen
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Zhongguan West Road 1219, 315201 Ningbo, China
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Wang RY, Guo XS, Fan B, Zou SF, Cao XH, Tong ZZ, Xu JT, Du BY, Fan ZQ. Design and Regulation of Lower Disorder-to-Order Transition Behavior in the Strongly Interacting Block Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui-Yang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Shuai Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shu-Fen Zou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zai-Zai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin-Yang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Qiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Huang M, Yue K, Huang J, Liu C, Zhou Z, Wang J, Wu K, Shan W, Shi AC, Cheng SZD. Highly Asymmetric Phase Behaviors of Polyhedral Oligomeric Silsesquioxane-Based Multiheaded Giant Surfactants. ACS NANO 2018; 12:1868-1877. [PMID: 29350910 DOI: 10.1021/acsnano.7b08687] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work reports the molecular design, synthesis, and systematic study on the bulk self-assembly behaviors of three series of polyhedral oligomeric silsesquioxane (POSS)-based multiheaded giant surfactants XDPOSS-PSn (X = 2, 3, and 4), which are composed of two, three, or four hydrophilic hydroxyl-group-functionalized DPOSS cages attached via one junction point to a hydrophobic polystyrene (PS) chain. These series of hybrid polymeric amphiphiles with precisely defined chemical structure and controllable molecular architecture are synthesized by the sequential usage of "click" reactions. By tuning molecular weights of the PS tail, we established full phase diagrams of XDPOSS-PSn as a function of the volume fractions of PS chains (VfPS). We found that the self-assembled structures were greatly influenced by the molecular architecture. Strikingly, our results showed that the lamellar morphology, which usually existed at relatively symmetric compositions in common diblock copolymers, became the thermodynamically stable phase in the 3DPOSS-PSn and 4DPOSS-PSn samples even at an asymmetric composition up to VfPS = 0.842, with the ratio between the thicknesses of PS and DPOSS lamellae up to 5.32. This unusual phenomenon induced by molecular architectural variation could be explained by the large cross-sectional area of DPOSS cages at the nanophase-separated domain interface and high elastic deformation energy of clustered DPOSS cages which have relatively rigid conformation. The unique bulk self-assembly behaviors in our POSS-based multiheaded giant surfactants provide insights in developing hybrid nanomaterials toward unconventional nanostructures.
Collapse
Affiliation(s)
- Mingjun Huang
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | | | - Jiahao Huang
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Chang Liu
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Zhe Zhou
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | | | - Kan Wu
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Wenpeng Shan
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University , Hamilton, Ontario, Canada L8S 4M1
| | - Stephen Z D Cheng
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
21
|
Lee J, Kwak J, Choi C, Han SH, Kim JK. Phase Behavior of Poly(2-vinylpyridine)-block-Poly(4-vinylpyridine) Copolymers Containing Gold Nanoparticles. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jaeyong Lee
- National Creative Research Initiative
Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jongheon Kwak
- National Creative Research Initiative
Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative
Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Sung Hyun Han
- National Creative Research Initiative
Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative
Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| |
Collapse
|
22
|
Ahn S, Kwak J, Choi C, Seo Y, Kim JK, Lee B. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Seonghyeon Ahn
- National Creative Research
Initiative Center for Smart Block Copolymers, Department of Chemical
Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jongheon Kwak
- National Creative Research
Initiative Center for Smart Block Copolymers, Department of Chemical
Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Chungryong Choi
- National Creative Research
Initiative Center for Smart Block Copolymers, Department of Chemical
Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Yeseong Seo
- National Creative Research
Initiative Center for Smart Block Copolymers, Department of Chemical
Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research
Initiative Center for Smart Block Copolymers, Department of Chemical
Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Byeongdu Lee
- X-ray Science Division, Advanced
Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| |
Collapse
|
23
|
Jiang W, Qiang Y, Liu M, Li W, Qiu F, Shi AC. Tetragonal phase of cylinders self-assembled from binary blends of AB diblock and (A'B) n star copolymers. Phys Chem Chem Phys 2017; 19:25754-25763. [PMID: 28914309 DOI: 10.1039/c7cp03718j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase behavior of binary blends composed of AB diblock and (A'B)n star copolymers is studied using the polymeric self-consistent field theory, focusing on the formation and stability of the stable tetragonal phase of cylinders. In general, cylindrical domains self-assembled from AB-type block copolymers are packed into a hexagonal array, although a tetragonal array of cylinders could be more favourable for lithography applications in microelectronics. The polymer blends are designed such that there is an attractive interaction between the A and A' blocks, which increases the compatibility between the two copolymers and thus suppresses the macroscopic phase separation of the blends. With an appropriate choice of system parameters, a considerable stability window for the targeted tetragonal phase is identified in the blends. Importantly, the transition mechanism between the hexagonal and tetragonal phases is elucidated by examining the distribution of the two types of copolymers in the unit cell of the structure. The results reveal that the short (A'B)n star copolymers are preferentially located in the bonding area connecting two neighboring domains in order to reduce extra stretching, whereas the long AB diblock copolymers are extended to further space of the unit cell.
Collapse
Affiliation(s)
- Wenbo Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
24
|
Kwak J, Mishra AK, Lee J, Lee KS, Choi C, Maiti S, Kim M, Kim JK. Fabrication of Sub-3 nm Feature Size Based on Block Copolymer Self-Assembly for Next-Generation Nanolithography. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00945] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jongheon Kwak
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Avnish Kumar Mishra
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kyu Seong Lee
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sandip Maiti
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Mooseong Kim
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center
for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
25
|
Huang J, Wang RY, Xu JT, Fan ZQ. Hydrogen-bonding induced abnormal microphase separation behavior of poly(ethylene oxide)-b-poly(tert-butyl acrylate-co-acrylic acid) block copolymers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sunday DF, Hannon AF, Tein S, Kline RJ. Thermodynamic and Morphological Behavior of Block Copolymer Blends with Thermal Polymer Additives. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel F. Sunday
- Materials
Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Adam F. Hannon
- Materials
Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Summer Tein
- McKetta
Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| | - R. Joseph Kline
- Materials
Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
27
|
Tsai SC, Lin YC, Lin EL, Chiang YW, Kuo SW. Hydrogen bonding strength effect on self-assembly supramolecular structures of diblock copolymer/homopolymer blends. Polym Chem 2016. [DOI: 10.1039/c6py00195e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The steric hindrance effect on the hydrogen bonding strength and self-assembly supramolecular structures of the PS-b-PVPh diblock copolymer when blended with P4VP and P2VP homopolymers was investigated.
Collapse
Affiliation(s)
- Shih-Chi Tsai
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Yung-Chih Lin
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - En-Li Lin
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| |
Collapse
|