1
|
Cao B, Zhang J, Ma Y, Wang Y, Li Y, Wang R, Cao D, Yang Y, Zhang R. Dual-Polymer Functionalized Melanin-AgNPs Nanocomposite with Hydroxyapatite Binding Ability to Penetrate and Retain in Biofilm Sequentially Treating Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400771. [PMID: 38751055 DOI: 10.1002/smll.202400771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Indexed: 10/01/2024]
Abstract
Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.
Collapse
Affiliation(s)
- Bing Cao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jian Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yingfei Ma
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanan Wang
- The Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yun Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruixue Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Donghai Cao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
2
|
Zhang J, Xiong B, Fu Z, Ning Y, Li D. Synergistic Effect of Hydroxyl and Carboxyl Groups on Promoting Nanoparticle Occlusion within Calcite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207843. [PMID: 36717276 DOI: 10.1002/smll.202207843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Direct occlusion of guest nanoparticles into host crystals enables the straightforward preparation for various of nanocomposite materials with emerging properties. Therefore, it is highly desirable to elucidate the 'design rules' that govern efficient nanoparticle occlusion. Herein, a series of sterically-stabilized nanoparticles are rationally prepared, where the surface stabilizer chains of such nanoparticles are composed of either poly(methacrylic acid), or poly(glycerol monomethacrylate), or poly((2-hydroxy-3-(methacryloyloxy)propyl)serine). Systematic investigation reveals that hydroxyl groups and carboxyl groups play a synergistic role in driving nanoparticle incorporation into calcite crystals, where the hydroxyl groups enhance colloidal stability of the nanoparticles and the carboxyl groups provide binding sites for efficient occlusion. The generality of these findings is further validated by extending it to polymer-stabilized gold nanoparticles. This study demonstrates that precision synthesis of polymer stabilizers comprising of synergistic functional groups can significantly promote nanoparticle occlusion, thus enabling the efficient construction of organic-inorganic hybrid materials via nanoparticle occlusion strategy.
Collapse
Affiliation(s)
- Jiahao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Biao Xiong
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ziyu Fu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yin Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Du R, Fielding LA. Preparation of polymer nanoparticle-based complex coacervate hydrogels using polymerisation-induced self-assembly derived nanogels. SOFT MATTER 2023; 19:2074-2081. [PMID: 36857682 DOI: 10.1039/d2sm01534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper reports a generic method to prepare polymer nanoparticle-based complex coacervate (PNCC) hydrogels by employing rationally designed nanogels synthesised by reversible addition-fragmentation chain-transfer (RAFT)-mediated polymerisation-induced self-assembly (PISA). Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agent (macro-CTA) was synthesised via RAFT solution polymerisation followed by chain-extension with a statistical copolymer of benzyl methacrylate (BzMA) and methacrylic acid (MAA) at pH 2. Thus, pH-responsive nanoparticles (NPs) comprising a hydrophobic polyacid core-forming block and a sulfonate-functional stabiliser block were formed. With the introduction of methacrylic acid into the core of the NPs, they become swollen with increasing pH, as judged by dynamic light scattering (DLS), indicating nanogel-type behaviour. PNCC hydrogels were prepared by simply mixing the PISA-derived nanogels and cationic branched polyethyleneimine (bPEI) at 20% w/w. In the absence of MAA in the core of the NPs, gel formation was not observed. The mass ratio between the nanogels and bPEI affected resulting hydrogel strength and a mixture of bPEI and PKSPMA68-P(BzMA0.6-stat-MAA0.4)300 NPs with a mass ratio of 0.14 at pH ∼7 resulted in a hydrogel with a storage modulus of approximately 2000 Pa, as determined by oscillatory rheology. This PNCC hydrogel was shear-thinning and injectable, with recovery of gel strength occurring rapidly after the removal of shear.
Collapse
Affiliation(s)
- Ruiling Du
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Hou W, Wu J, Li Z, Zhang Z, Shi Y, Chen Y. Efficient Synthesis and PISA Behavior of Molecular Bottlebrush Block Copolymers via a Grafting-From Strategy through RAFT Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiasheng Wu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheqi Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Marzec B, Walker J, Jhons Y, Meldrum FC, Shaver M, Nudelman F. Micron-sized biogenic and synthetic hollow mineral spheres occlude additives within single crystals. Faraday Discuss 2022; 235:536-550. [PMID: 35388821 PMCID: PMC9281370 DOI: 10.1039/d1fd00095k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
Incorporating additives within host single crystals is an effective strategy for producing composite materials with tunable mechanical, magnetic and optical properties. The type of guest materials that can be occluded can be limited, however, as incorporation is a complex process depending on many factors including binding of the additive to the crystal surface, the rate of crystal growth and the stability of the additives in the crystallisation solution. In particular, the size of occluded guests has been restricted to a few angstroms - as for single molecules - to a few hundred nanometers - as for polymer vesicles and particles. Here, we present a synthetic approach for occluding micrometer-scale objects, including high-complexity unicellular organisms and synthetic hollow calcite spheres within calcite single crystals. Both of these objects can transport functional additives, including organic molecules and nanoparticles that would not otherwise occlude within calcite. Therefore, this method constitutes a generic approach using calcite as a delivery system for active compounds, while providing them with effective protection against environmental factors that could cause degradation.
Collapse
Affiliation(s)
- Bartosz Marzec
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK.
- JEOL UK Ltd, 1-2 Silver Court, Watchmead, Welwyn Garden City, AL7 1LT, UK
| | - Jessica Walker
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK.
- Beamline I14, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Yasmeen Jhons
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Michael Shaver
- Department of Materials, School of Natural Sciences, The University of Manchester, UK
| | - Fabio Nudelman
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
6
|
Jimaja S, Varlas S, Foster JC, Taton D, Dove AP, O'Reilly RK. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl isocyanide)s. Polym Chem 2022; 13:4047-4053. [PMID: 35923350 PMCID: PMC9274662 DOI: 10.1039/d2py00397j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022]
Abstract
We report the synthesis of redox- and pH-sensitive block copolymer micelles that contain chiral cores composed of helical poly(aryl isocyanide)s. Pentafluorophenyl (PFP) ester-containing micelles synthesised via nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers are modified post-polymerisation with various diamines to introduce cross-links and/or achieve stimulus-sensitive nanostructures. The successful introduction of the diamines is confirmed by Fourier-transform infrared spectroscopy (FT-IR), while the stabilisation effect of the cross-linking is explored by dynamic light scattering (DLS). The retention of the helicity of the core-forming polymer block is verified by circular dichroism (CD) spectroscopy and the stimuli-responsiveness of the nanoparticles towards a reducing agent (l-glutathione, GSH) and pH is evaluated by following the change in the size of the nanoparticles by DLS. These stimuli-responsive nanoparticles could find use in applications such as drug delivery, nanosensors or biological imaging.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique 33607 Cedex Pessac France
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Jeffrey C Foster
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique 33607 Cedex Pessac France
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | | |
Collapse
|
7
|
Nahi O, Broad A, Kulak AN, Freeman HM, Zhang S, Turner TD, Roach L, Darkins R, Ford IJ, Meldrum FC. Positively Charged Additives Facilitate Incorporation in Inorganic Single Crystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4910-4923. [PMID: 35722202 PMCID: PMC9202304 DOI: 10.1021/acs.chemmater.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Incorporation of guest additives within inorganic single crystals offers a unique strategy for creating nanocomposites with tailored properties. While anionic additives have been widely used to control the properties of crystals, their effective incorporation remains a key challenge. Here, we show that cationic additives are an excellent alternative for the synthesis of nanocomposites, where they are shown to deliver exceptional levels of incorporation of up to 70 wt % of positively charged amino acids, polymer particles, gold nanoparticles, and silver nanoclusters within inorganic single crystals. This high additive loading endows the nanocomposites with new functional properties, including plasmon coupling, bright fluorescence, and surface-enhanced Raman scattering (SERS). Cationic additives are also shown to outperform their acidic counterparts, where they are highly active in a wider range of crystal systems, owing to their outstanding colloidal stability in the crystallization media and strong affinity for the crystal surfaces. This work demonstrates that although often overlooked, cationic additives can make valuable crystallization additives to create composite materials with tailored composition-structure-property relationships. This versatile and straightforward approach advances the field of single-crystal composites and provides exciting prospects for the design and fabrication of new hybrid materials with tunable functional properties.
Collapse
Affiliation(s)
- Ouassef Nahi
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Alexander Broad
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Alexander N. Kulak
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Helen M. Freeman
- School
of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Shuheng Zhang
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Thomas D. Turner
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Lucien Roach
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB,
UMR 5026, 33600 Pessac, France
| | - Robert Darkins
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Ian J. Ford
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Fiona C. Meldrum
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
8
|
Wang H, Fliedel C, Manoury E, Poli R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Ning Y, Armes SP, Li D. Polymer-Inorganic Crystalline Nanocomposite Materials via Nanoparticle Occlusion. Macromol Rapid Commun 2022; 43:e2100793. [PMID: 35078274 DOI: 10.1002/marc.202100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Efficient occlusion of guest nanoparticles into host single crystals opens up a straightforward and versatile way to construct functional crystalline nanocomposites. This new technique has attracted increasing research interest because it enables the composition, structure and property of the resulting nanocomposites to be well-controlled. In this review article, we aim to provide a comprehensive summary of nanoparticle occlusion within inorganic crystals. First, we summarize recently-developed strategies for the occlusion of various colloidal particles (e.g., diblock copolymer nanoparticles, polymer-modified inorganic nanoparticles, oil droplets, etc.) within host crystals (e.g., CaCO3 , ZnO or ZIF-8). Second, new results pertaining to spatially-controlled occlusion and the physical mechanism of nanoparticle occlusion are briefly discussed. Finally, we highlight the physicochemical properties and potential applications of various functional nanocomposite crystals constructed via nanoparticle occlusion and we also offer our perspective on the likely future for this research topic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin Ning
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
10
|
Ren J, Liu Y, Li H. Incorporating polymers within a single‐crystal: From heterogeneous structure to multiple functions. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yujing Liu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Wang WL, Jin RH. Synthesis and self-assembly of amphiphilic comb-copolymers possessing polyethyleneimine and its derivatives: Site-selective formation of loop-cluster covered vesicles and flower micelles. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Preparation of Responsive Zwitterionic Diblock Copolymers Containing Phosphate and Phosphonate Groups. Macromol Res 2020. [DOI: 10.1007/s13233-020-8148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Ning Y, Han Y, Han L, Derry MJ, Armes SP. Exerting Spatial Control During Nanoparticle Occlusion within Calcite Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yin Ning
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Yide Han
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Lijuan Han
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Matthew J. Derry
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
- Present address: Aston Institute of Materials Research Aston University Birmingham B4 7ET UK
| | - Steven P. Armes
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
14
|
Ning Y, Han Y, Han L, Derry MJ, Armes SP. Exerting Spatial Control During Nanoparticle Occlusion within Calcite Crystals. Angew Chem Int Ed Engl 2020; 59:17966-17973. [PMID: 32613700 DOI: 10.1002/anie.202007110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Indexed: 11/08/2022]
Abstract
In principle, nanoparticle occlusion within crystals provides a straightforward and efficient route to make new nanocomposite materials. However, developing a deeper understanding of the design rules underpinning this strategy is highly desirable. In particular, controlling the spatial distribution of the guest nanoparticles within the host crystalline matrix remains a formidable challenge. Herein, we show that the surface chemistry of the guest nanoparticles and the [Ca2+ ] concentration play critical roles in determining the precise spatial location of the nanoparticles within calcite crystals. Moreover, in situ studies provide important mechanistic insights regarding surface-confined nanoparticle occlusion. Overall, this study not only provides useful guidelines for efficient nanoparticle occlusion, but also enables the rational design of patterned calcite crystals using model anionic block copolymer vesicles.
Collapse
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Yide Han
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Lijuan Han
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Matthew J Derry
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK.,Present address: Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| |
Collapse
|
15
|
Ning Y, Armes SP. Efficient Occlusion of Nanoparticles within Inorganic Single Crystals. Acc Chem Res 2020; 53:1176-1186. [PMID: 32421304 DOI: 10.1021/acs.accounts.0c00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In principle, the incorporation of guest nanoparticles within host crystals should provide a straightforward and versatile route to a wide range of nanocomposite materials. However, crystallization normally involves expelling impurities, so nanoparticle occlusion is both counter-intuitive and technically challenging. Clearly, the nanoparticles should have a strong interaction with the growing crystalline lattice, but quantifying such an affinity has been challenging; the basic principles that govern efficient nanoparticle occlusion within inorganic single crystals are rather poorly understood. In the past few years, we have focused on the elucidation of robust design rules for such systems; our progress is summarized in this article.Polymerization-induced self-assembly (PISA) is widely recognized as a powerful platform technology for the preparation of a broad range of model organic nanoparticles. Herein, PISA was exploited to prepare sterically stabilized diblock copolymer nano-objects (e.g., spheres, worms, or vesicles) of varying size using steric stabilizers of well-defined chain length, variable anionic charge density, tunable surface density, and adjustable chemical functionality (e.g., carboxylic acid, phosphate, sulfate or sulfonate groups). Thus, we were able to systematically investigate how such structural parameters influence nanoparticle occlusion. Given its commercial importance for many industrial sectors, calcium carbonate was selected as the model host crystal for nanoparticle occlusion studies. Perhaps surprisingly, the extent of nanoparticle occlusion is not particularly sensitive to nanoparticle size or morphology. However, the steric stabilizer chain length can play a key role: relatively short chains lead to surface-confined occlusion, while sufficiently long chains enable uniform nanoparticle occlusion to be achieved throughout the crystal lattice (albeit sometimes inducing a significant change in crystal morphology). Optimizing the anionic charge density and surface density of the stabilizer chains is required to maximize the extent of nanoparticle occlusion, while steric stabilizer chains comprising anionic carboxylate groups led to greater occlusion compared to those composed of phosphate, sulfate, or sulfonate groups when examining a model vesicle system.Subsequently, our occlusion studies were extended to include functional hybrid nanocomposite crystals. For example, the spatially controlled occlusion of poly(glycerol monomethacrylate)-stabilized gold nanoparticles was achieved within semiconductive ZnO crystals by either controlling the nanoparticle concentration or by delaying their addition to the reaction mixture. Moreover, oil droplets of up to 500 nm have been incorporated into calcite crystals at up to 11% by mass, despite the large mismatch in surface energy between the hydrophobic oil droplets and the ionic crystal lattice. We have also explored a "Trojan horse" strategy, whereby cargos comprising nanoparticles or soluble dye molecules are first encapsulated within anionic block copolymer vesicles prior to their incorporation within calcite crystals. This approach offers a generic and efficient strategy for the occlusion of many types of guest species into single crystals. In summary, we have established important guidelines for efficient nanoparticle occlusion within crystals, which opens up new avenues for the synthesis of next-generation hybrid materials.
Collapse
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
16
|
Kim T, Song JH, Back JH, Seo B, Lim CS, Paik HJ, Lee W. Flame Retardant Submicron Particles via Surfactant-Free RAFT Emulsion Polymerization of Styrene Derivatives Containing Phosphorous. Polymers (Basel) 2020; 12:polym12061244. [PMID: 32486082 PMCID: PMC7361693 DOI: 10.3390/polym12061244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
The reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of diethyl-(4-vinylbenzyl) phosphate (DEVBP) was performed using PEG-TTC as a macro RAFT agent. PEG-TTC (MW 2000, 4000) was synthesized by the esterification of poly (ethylene glycol) methyl ether with a carboxylic-terminated RAFT agent, composed a hydrophilic poly (ethylene glycol) (PEG) block and a hydrophobic dodecyl chain. The RAFT emulsion polymerization of DEVBP was well–controlled with a narrow molecular size distribution. Dynamic light scattering and confocal laser scanning microscopy were used to examine the PEG-b-PDVBP submicron particles, and the length of the PEG chain (hydrophilic block) was found to affect the particle size distribution and molecular weight distribution. The submicron particle size increased with increasing degree of polymerization (35, 65, and 130), and precipitation was observed at a high degree of polymerization (DP) using low molecular weight PEG-TTC (DP 130, A3). The flame retardant properties of the PEG-b-PDVBP were evaluated by thermogravimetric analysis (TGA) and micro cone calorimeter (MCC). In the combustion process, the residue of PEG-b-PDEVBP were above 500 °C was observed (A1 ~ B3, 27 ~ 38%), and flame retardant effect of PEG-b-PDEVBP submicron particles/PVA composite were confirmed by increasing range of temperature and decreasing total heat release with increasing contents of PEG-b-PDEVBP. The PEG-b-PDEVBP submicron particles can provide flame retardant properties to aqueous, dispersion and emulsion formed organic/polymer products.
Collapse
Affiliation(s)
- Taeyoon Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea; (T.K.); (J.-H.S.); (J.-H.B.); (B.S.); (C.-S.L.)
| | - Joo-Hyun Song
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea; (T.K.); (J.-H.S.); (J.-H.B.); (B.S.); (C.-S.L.)
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jong-Ho Back
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea; (T.K.); (J.-H.S.); (J.-H.B.); (B.S.); (C.-S.L.)
| | - Bongkuk Seo
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea; (T.K.); (J.-H.S.); (J.-H.B.); (B.S.); (C.-S.L.)
| | - Choong-Sun Lim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea; (T.K.); (J.-H.S.); (J.-H.B.); (B.S.); (C.-S.L.)
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: (H.-J.P.); (W.L.)
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea; (T.K.); (J.-H.S.); (J.-H.B.); (B.S.); (C.-S.L.)
- Correspondence: (H.-J.P.); (W.L.)
| |
Collapse
|
17
|
He X, Li X, Dong J. Self-assembly of well-defined amphiphilic poly(N-(2-methacryloylxyethyl)pyrrolidone)- poly(lauryl methacrylate) diblock copolymers in non-polar solvent. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Douverne M, Ning Y, Tatani A, Meldrum FC, Armes SP. How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite? Angew Chem Int Ed Engl 2019; 58:8692-8697. [DOI: 10.1002/anie.201901307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marcel Douverne
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
- Faculty of Chemistry, Pharmaceutical Sciences and GeosciencesJohannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Yin Ning
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Aikaterini Tatani
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Fiona C. Meldrum
- School of ChemistryUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Steven P. Armes
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
19
|
Li D, Huo M, Liu L, Zeng M, Chen X, Wang X, Yuan J. Overcoming Kinetic Trapping for Morphology Evolution during Polymerization‐Induced Self‐Assembly. Macromol Rapid Commun 2019; 40:e1900202. [DOI: 10.1002/marc.201900202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xiaosong Wang
- Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| |
Collapse
|
20
|
Douverne M, Ning Y, Tatani A, Meldrum FC, Armes SP. How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite? Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marcel Douverne
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
- Faculty of Chemistry, Pharmaceutical Sciences and GeosciencesJohannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Yin Ning
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Aikaterini Tatani
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Fiona C. Meldrum
- School of ChemistryUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Steven P. Armes
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
21
|
Ning Y, Fielding LA, Nutter J, Kulak AN, Meldrum FC, Armes SP. Spatially Controlled Occlusion of Polymer‐Stabilized Gold Nanoparticles within ZnO. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yin Ning
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Lee A. Fielding
- The School of MaterialsUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - John Nutter
- Henry Royce InstituteDepartment of Materials Science and EngineeringUniversity of Sheffield Mappin Street Sheffield S1 3JD UK
| | | | - Fiona C. Meldrum
- School of ChemistryUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Steven P. Armes
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
22
|
Ning Y, Fielding LA, Nutter J, Kulak AN, Meldrum FC, Armes SP. Spatially Controlled Occlusion of Polymer-Stabilized Gold Nanoparticles within ZnO. Angew Chem Int Ed Engl 2019; 58:4302-4307. [PMID: 30673157 DOI: 10.1002/anie.201814492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/17/2022]
Abstract
In principle, incorporating nanoparticles into growing crystals offers an attractive and highly convenient route for the production of a wide range of novel nanocomposites. Herein we describe an efficient aqueous route that enables the spatially controlled occlusion of gold nanoparticles (AuNPs) within ZnO crystals at up to 20 % by mass. Depending on the precise synthesis protocol, these AuNPs can be (i) solely located within a central region, (ii) uniformly distributed throughout the ZnO host crystal or (iii) confined to a surface layer. Remarkably, such efficient occlusion is mediated by a non-ionic water-soluble polymer, poly(glycerol monomethacrylate)70 (G70 ), which is chemically grafted to the AuNPs; pendent cis-diol side groups on this steric stabilizer bind Zn2+ cations, which promotes nanoparticle interaction with the growing ZnO crystals. Finally, uniform occlusion of G70 -AuNPs within this inorganic host leads to faster UV-induced photodegradation of a model dye.
Collapse
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Lee A Fielding
- The School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John Nutter
- Henry Royce Institute, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| |
Collapse
|
23
|
Ning Y, Han L, Douverne M, Penfold NJW, Derry MJ, Meldrum FC, Armes SP. What Dictates the Spatial Distribution of Nanoparticles within Calcite? J Am Chem Soc 2019; 141:2481-2489. [DOI: 10.1021/jacs.8b12291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Lijuan Han
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Marcel Douverne
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Nicholas J. W. Penfold
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Matthew J. Derry
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Fiona C. Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
24
|
Fielding LA, Hendley IV CT, Asenath-Smith E, Estroff LA, Armes SP. Rationally designed anionic diblock copolymer worm gels are useful model systems for calcite occlusion studies. Polym Chem 2019. [DOI: 10.1039/c9py00889f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binary mixtures of RAFT macromolecular chain transfer agents are utilized to rationally design anionic diblock copolymer nanoparticles via PISA. The role of carboxylate groups in directing calcite growth within copolymer worm gels is investigated.
Collapse
Affiliation(s)
- Lee A. Fielding
- Department of Materials
- The University of Manchester
- Manchester
- UK
| | - Coit T. Hendley IV
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| | - Emily Asenath-Smith
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
- Cold Regions Research and Engineering Laboratory (CRREL)
| | - Lara A. Estroff
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| | - Steven P. Armes
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| |
Collapse
|
25
|
Le D, Keller D, Delaittre G. Reactive and Functional Nanoobjects by Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800551. [DOI: 10.1002/marc.201800551] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Dao Le
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| | - Dominic Keller
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| |
Collapse
|
26
|
Lomège J, Lapinte V, Negrell C, Robin JJ, Caillol S. Fatty Acid-Based Radically Polymerizable Monomers: From Novel Poly(meth)acrylates to Cutting-Edge Properties. Biomacromolecules 2018; 20:4-26. [PMID: 30273485 DOI: 10.1021/acs.biomac.8b01156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing price of barrels of oil, global warming, and other environmental problems favor the use of renewable resources to replace the petroleum-based polymers used in various applications. Recently, fatty acids (FAs) and their derivatives have appeared among the most promising candidates to afford novel and innovative bio-based (co)polymers because of their ready availability, their low toxicity, and their high versatility. However, the current literature mostly focused on FA-based polymers prepared by condensation polymerization or oxypolymerization, while only a few works have been devoted to radical polymerization due to the low reactivity of FAs through radical process. Thus, the aim of this Review is to give an overview of (i) the most common synthetic pathways reported in the literature to provide suitable monomers from FAs and their derivatives for radical polymerization, (ii) the available radical processes to afford FA-based (co)polymers, and (iii) the different applications in which FA-based (co)polymers have been used since the past few years.
Collapse
Affiliation(s)
- Juliette Lomège
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Claire Negrell
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| |
Collapse
|
27
|
Tan J, Xu Q, Zhang Y, Huang C, Li X, He J, Zhang L. Room Temperature Synthesis of Self-Assembled AB/B and ABC/BC Blends by Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) in Water. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01456] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Xu Q, Tian C, Zhang L, Cheng Z, Zhu X. Photo-Controlled Polymerization-Induced Self-Assembly (Photo-PISA): A Novel Strategy Using In Situ Bromine-Iodine Transformation Living Radical Polymerization. Macromol Rapid Commun 2018; 40:e1800327. [PMID: 30027663 DOI: 10.1002/marc.201800327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Indexed: 11/11/2022]
Abstract
A series of hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) macroinitiators and stabilizers are synthesized in methanol through in situ photo-controlled bromine-iodine transformation living radical polymerization, where ethyl α-bromophenylacetate (EBPA) is the initial initiator and is converted to an iodo-type initiator in the presence of NaI. The subsequent photo-controlled polymerization-induced self-assembly (photo-PISA) process is achieved by adding a second monomer, hydrophobic benzyl methacrylate (BnMA), under irradiation with blue light emitting diode (LED) light at room temperature. The effect of the target degree of polymerization (DP) of PPEGMA, PBnMA, as well as the solids content on the self-assembly behavior of block copolymer PPEGMA-b-PBnMA is evaluated by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS) characterization. Resulting uniform spherical micelles and vesicle aggregates are observed.
Collapse
Affiliation(s)
- Qinghua Xu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun Tian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Global Institute of Soft Technology, No. 5 Qingshan Road, Suzhou National Hi-Tech District, Suzhou, 215163, China
| |
Collapse
|
29
|
He J, Xu Q, Tan J, Zhang L. Ketone-Functionalized Polymer Nano-Objects Prepared via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) Using a Poly(diacetone acrylamide)-Based Macro-RAFT Agent. Macromol Rapid Commun 2018; 40:e1800296. [DOI: 10.1002/marc.201800296] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Qin Xu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| |
Collapse
|
30
|
Hendley CT, Fielding LA, Jones ER, Ryan AJ, Armes SP, Estroff LA. Mechanistic Insights into Diblock Copolymer Nanoparticle–Crystal Interactions Revealed via in Situ Atomic Force Microscopy. J Am Chem Soc 2018; 140:7936-7945. [DOI: 10.1021/jacs.8b03828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Coit T. Hendley
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lee A. Fielding
- The School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Elizabeth R. Jones
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Anthony J. Ryan
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Zhang Y, Han G, Cao M, Guo T, Zhang W. Influence of Solvophilic Homopolymers on RAFT Polymerization-Induced Self-Assembly. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00690] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing, China
| | | | | | | |
Collapse
|
32
|
Tan J, Xu Q, Li X, He J, Zhang Y, Dai X, Yu L, Zeng R, Zhang L. Enzyme-PISA: An Efficient Method for Preparing Well-Defined Polymer Nano-Objects under Mild Conditions. Macromol Rapid Commun 2018; 39:e1700871. [DOI: 10.1002/marc.201700871] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| | - Qin Xu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Xueliang Li
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jun He
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Xiaocong Dai
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Liangliang Yu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| |
Collapse
|
33
|
Ma J, Andriambololona HM, Quemener D, Semsarilar M. Membrane preparation by sequential spray deposition of polymer PISA nanoparticles. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Nakamura K, Takagishi T. Change in Zeta Potential of Calcium Carbonate during Reactive Crystallization. KAGAKU KOGAKU RONBUN 2018. [DOI: 10.1252/kakoronbunshu.44.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Yeow J, Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700137. [PMID: 28725534 PMCID: PMC5514979 DOI: 10.1002/advs.201700137] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Indexed: 05/17/2023]
Abstract
The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.
Collapse
Affiliation(s)
- Jonathan Yeow
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| | - Cyrille Boyer
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| |
Collapse
|
36
|
Tan J, Liu D, Huang C, Li X, He J, Xu Q, Zhang L. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700195] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/27/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Xueliang Li
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jun He
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Qin Xu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| |
Collapse
|
37
|
Blackman LD, Doncom KEB, Gibson MI, O'Reilly RK. Comparison of photo- and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies. Polym Chem 2017; 8:2860-2871. [PMID: 29225706 PMCID: PMC5718300 DOI: 10.1039/c7py00407a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Polymerization-induced self-assembly (PISA) is an emerging industrially relevant technology, which allows the preparation of defined and predictable polymer self-assemblies with a wide range of morphologies. In recent years, interest has turned to photoinitiated PISA processes, which show markedly accelerated reaction kinetics and milder conditions, thereby making it an attractive alternative to thermally initiated PISA. Herein, we attempt to elucidate the differences between these two initiation methods using isothermally derived phase diagrams of a well-documented poly(ethylene glycol)-b-(2-hydroxypropyl methacrylate) (PEG-b-HPMA) PISA system. By studying the influence of the intensity of the light source used, as well as an investigation into the thermodynamically favorable morphologies, the factors dictating differences in the obtained morphologies when comparing photo- and thermally initiated PISA were explored. Our findings indicate that differences in a combination of both reaction kinetics and end group fidelity led to the observed discrepencies between the two techniques. We find that the loss of the end group in photoinitiated PISA drives the formation of higher order structures and that a morphological transition from worms to unilamellar vesicles could be induced by extended periods of light and heat irradiation. Our findings demonstrate that PISA of identical block copolymers by the two different initiation methods can lead to structures that are both chemically and morphologically distinct.
Collapse
Affiliation(s)
- Lewis D. Blackman
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
| | - Kay E. B. Doncom
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
| | - Matthew I. Gibson
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
- Warwick Medical School , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Rachel K. O'Reilly
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
| |
Collapse
|
38
|
Zhao W, Ta HT, Zhang C, Whittaker AK. Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of 19F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules 2017; 18:1145-1156. [DOI: 10.1021/acs.biomac.6b01788] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| |
Collapse
|
39
|
Tan J, Huang C, Liu D, Li X, He J, Xu Q, Zhang L. Polymerization-Induced Self-Assembly of Homopolymer and Diblock Copolymer: A Facile Approach for Preparing Polymer Nano-Objects with Higher-Order Morphologies. ACS Macro Lett 2017; 6:298-303. [PMID: 35650906 DOI: 10.1021/acsmacrolett.7b00134] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymerization-induced self-assembly of homopolymer and diblock copolymer using a binary mixture of small chain transfer agent (CTA) and macromolecular chain transfer agent (macro-CTA) is reported. With this system, homopolymer and diblock copolymer were formed and chain extended at the same time to form polymer nano-objects. The molar ratio of homopolymer and diblock copolymer had a significant effect on the morphology of the polymer nano-objects. Porous vesicles, porous nanospheres, and micron-sized particles with highly porous inner structure were prepared by this method. We expect that this method will greatly expand the promise of polymerization-induced self-assembly for the synthesis of a range of polymer nano-objects with unique morphologies.
Collapse
Affiliation(s)
- Jianbo Tan
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Chundong Huang
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongdong Liu
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueliang Li
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qin Xu
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department
of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
40
|
Wang J, Li B, Wang X, Yang F, Shen H, Wu D. Morphological Evolution of Self-Assembled Structures Induced by the Molecular Architecture of Supra-Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13706-13715. [PMID: 27966989 DOI: 10.1021/acs.langmuir.6b03550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of telechelic supramolecular amphiphiles [POSS-Azo8@(β-CD-PDMAEMA)1→8] was accomplished by orthogonally coupling the multiarm host polymer β-cyclodextrin-poly(dimethylaminoethyl methacrylate) (β-CD-PDMAEMA) with an octatelechelic guest molecule azobenzene modified-polyhedral oligomeric silsesquioxanes (POSS-Azo8) under different host-guest ratios. These telechelic supramolecular amphiphiles possess a rigid core and flexible corona. Increasing the multiarm host polymer coupled onto the rigid POSS core made the molecular architecture tend to be symmetrical and spherical. POSS-Azo8@[β-CD-PDMAEMA]1→8 could self-assemble into diverse morphologies evolving from spherical micelles, wormlike micelles, and branched aggregates to bowl-shaped vesicles. Distinct from the traditional linear amphiphilic polymers, we discovered that the self-assembly of POSS-Azo8@[β-CD-PDMAEMA]1→8 was dominantly regulated by their molecular architectures instead of hydrophilicity, which has also been verified using computer simulation results.
Collapse
Affiliation(s)
| | | | | | - Fei Yang
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | | | - Decheng Wu
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
41
|
|
42
|
Yang P, Mykhaylyk O, Jones ER, Armes SP. RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer. Macromolecules 2016; 49:6731-6742. [PMID: 27708458 PMCID: PMC5041161 DOI: 10.1021/acs.macromol.6b01563] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/22/2016] [Indexed: 01/26/2023]
Abstract
We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition-fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [Yang P.; Macromolecules2013, 46, 8545-8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer core-forming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles.
Collapse
Affiliation(s)
- Pengcheng Yang
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Oleksandr
O. Mykhaylyk
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Elizabeth R. Jones
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
43
|
Captain I, Deming TJ. Methionine sulfoxide and phosphonate containing double hydrophilic block copolypeptides and their mineralization of calcium carbonate. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ilya Captain
- Department of Chemistry and Biochemistry; University of California; Los Angeles California 90095
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry; University of California; Los Angeles California 90095
- Department of Bioengineering; University of California; Los Angeles California 90095
| |
Collapse
|
44
|
Ning Y, Fielding LA, Ratcliffe LPD, Wang YW, Meldrum FC, Armes SP. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains. J Am Chem Soc 2016; 138:11734-42. [PMID: 27509298 PMCID: PMC5025825 DOI: 10.1021/jacs.6b05563] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Polymerization-induced
self-assembly (PISA) offers a highly versatile
and efficient route to a wide range of organic nanoparticles. In this
article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl
methacrylate)-poly(benzyl methacrylate) [PSEM–PBzMA] diblock
copolymer nanoparticles can be prepared with either a high or low
PSEM stabilizer surface density using either RAFT dispersion polymerization
in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization,
respectively. We then use these model nanoparticles to gain new insight
into a key topic in materials chemistry: the occlusion of organic
additives into inorganic crystals. Substantial differences are observed
for the extent of occlusion of these two types of anionic nanoparticles
into calcite (CaCO3), which serves as a suitable model
host crystal. A low PSEM stabilizer surface density leads to uniform
nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v),
while minimal occlusion occurs when using nanoparticles with a high
PSEM stabilizer surface density. This counter-intuitive observation
suggests that an optimum anionic surface density is required for efficient
occlusion, which provides a hitherto unexpected design rule for the
incorporation of nanoparticles within crystals.
Collapse
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Lee A Fielding
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.,The School of Materials, University of Manchester , Oxford Road, Manchester, M13 9PL, U.K
| | - Liam P D Ratcliffe
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Yun-Wei Wang
- School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K
| | - Steven P Armes
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
45
|
Canning S, Smith GN, Armes SP. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016; 49:1985-2001. [PMID: 27019522 PMCID: PMC4806311 DOI: 10.1021/acs.macromol.5b02602] [Citation(s) in RCA: 666] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Gregory N. Smith
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
46
|
Ning Y, Fielding LA, Doncom KE, Penfold NJW, Kulak AN, Matsuoka H, Armes SP. Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion? ACS Macro Lett 2016; 5:311-315. [PMID: 27042383 PMCID: PMC4810755 DOI: 10.1021/acsmacrolett.6b00022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
New spherical diblock copolymer nanoparticles were synthesized via RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) at 70 °C and 20% w/w solids using either poly(carboxybetaine methacrylate) or poly(proline methacrylate) as the steric stabilizer block. Both of these stabilizers contain carboxylic acid groups, but poly(proline methacrylate) is anionic above pH 9.2, whereas poly(carboxybetaine methacrylate) has zwitterionic character at this pH. When calcite crystals are grown at an initial pH of 9.5 in the presence of these two types of nanoparticles, it is found that the anionic poly(proline methacrylate)-stabilized particles are occluded uniformly throughout the crystals (up to 6.8% by mass, 14.0% by volume). In contrast, the zwitterionic poly(carboxybetaine methacrylate)-stabilized particles show no signs of occlusion into calcite crystals grown under identical conditions. The presence of carboxylic acid groups alone therefore does not guarantee efficient occlusion: overall anionic character is an additional prerequisite.
Collapse
Affiliation(s)
- Yin Ning
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Lee A. Fielding
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
- The
School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Kay E.
B. Doncom
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Nicholas J. W. Penfold
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Alexander N. Kulak
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United
Kingdom
| | - Hideki Matsuoka
- Department
of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| |
Collapse
|
47
|
Zhao Y, Zhu W, Wu Y, Qu L, Liu Z, Zhang K. An aggregation-induced emission star polymer with pH and metal ion responsive fluorescence. Polym Chem 2016. [DOI: 10.1039/c6py01488g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A one-pot strategy from ring-opening metathesis polymerization was employed to prepare AIE-active star polymers, which were designed to have multi-responsive fluorescence to varied stimuli including pH, CO2, and metal ions.
Collapse
Affiliation(s)
- Yuming Zhao
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Wen Zhu
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ying Wu
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Lin Qu
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Zhengping Liu
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|