1
|
Liu X, Zheng D, Long Y, Wang L. Highly Robust Nanogels from Thermal-Responsive Nanoparticles with Controlled Swelling for Engineering Deployments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11175-11184. [PMID: 36799692 DOI: 10.1021/acsami.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regular nanogels have been demonstrated their inefficiency for subterranean oil recovery due to their intrinsic drawbacks of fast swelling within minutes, thermal instability, and salinity vulnerability. Prior deployment of swelling delayed nanogels mainly depended on the reservoirs at a relatively higher temperature. To address the issues encountered during engineering deployment, hereinwe devised an integrative approach to in situ form swelling delayed robust nanogels by introducing radically active monomers with thermally sensitive moieties. The nanoparticles with hydrophobic cores in brine in response to thermal input in situ generated well-dispersed hydrophilic nanogels, which showed a pronounced delayed swelling of a week compared to traditional nanogels showing swelling kinetics within minutes. Furthermore, the formation of swelling-delayed nanogels could occur at ambient temperature. This behavior was radically different from that of temperature-controlled labile cross-linkers containing nanogels, requiring temperatures greater than 50 °C for volume increase thanks to ester hydrolysis. In addition, the in-situ formed nanogels displayed long-term thermal stability and salinity tolerance under hostile media at temperatures up to 130 °C. The release of an acidic proton under aqueous conditions has been demonstrated to control the microenvironment for various scenarios. The nanotechnology of converting hydrophobic nanoparticles to hydrophilic nanogels could be applied in a wide range of practical applications such as plugging materials and foaming stabilizers for in-depth conformance control during water and CO2 flooding.
Collapse
Affiliation(s)
- Xing Liu
- Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| | - Da Zheng
- PetroChina Oil, Gas & New Energies Company, Beijing 100007, China
| | - Yifu Long
- CNPC Research Institute of Engineering Technology, Beijing 102206, China
| | - Lizhu Wang
- Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Pasini S, Maccarrone S, Székely NK, Stingaciu LR, Gelissen APH, Richtering W, Monkenbusch M, Holderer O. Fluctuation suppression in microgels by polymer electrolytes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:034302. [PMID: 32566697 PMCID: PMC7297544 DOI: 10.1063/4.0000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Structural details of thermoresponsive, cationically poly(N-iso-propylacrylamide-co-methacrylamido propyl trimethyl ammonium chloride) microgels and the influence of the anionic electrolyte polystyrene sulfonate (PSS) on the internal structure and dynamics of the cationic microgels have been studied with a combination of small angle neutron scattering (SANS) and neutron spin echo (NSE) spectroscopy. While SANS can yield information on the overall size of the particles and on the typical correlation length inside the particles, studying the segmental polymer dynamics with NSE gives access to more internal details, which only appear due to their effect on the polymer motion. The segmental dynamics of the microgels studied in this paper is to a large extent suppressed by the PSS additive. Possible scenarios of the influence of the polyanions on the microgel structure and dynamics are discussed.
Collapse
Affiliation(s)
- S. Pasini
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - S. Maccarrone
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - N. K. Székely
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - L. R. Stingaciu
- NScD, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A. P. H. Gelissen
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - W. Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen and JARA-SOFT 52056 Aachen, Germany
| | - M. Monkenbusch
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - O. Holderer
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| |
Collapse
|
3
|
Mergel O, Schneider S, Tiwari R, Kühn PT, Keskin D, Stuart MCA, Schöttner S, de Kanter M, Noyong M, Caumanns T, Mayer J, Janzen C, Simon U, Gallei M, Wöll D, van Rijn P, Plamper FA. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization. Chem Sci 2019; 10:1844-1856. [PMID: 30842853 PMCID: PMC6371888 DOI: 10.1039/c8sc04369h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications.
Collapse
Affiliation(s)
- Olga Mergel
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Sabine Schneider
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Rahul Tiwari
- DWI - Leibniz Institute for Interactive Materials , RWTH Aachen University , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Philipp T Kühn
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Damla Keskin
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute , Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , D-64287 Darmstadt , Germany
| | - Martinus de Kanter
- Chair for Laser Technology LLT , RWTH Aachen University , Steinbachstr. 15 , 52074 Aachen , Germany
| | - Michael Noyong
- Institute of Inorganic Chemistry , JARA-SOFT , RWTH Aachen University , Landoltweg 1 , 52056 Aachen , Germany
| | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy , RWTH Aachen University , Ahornstraße 55 , D-52074 Aachen , Germany
| | - Joachim Mayer
- GFE Central Facility for Electron Microscopy , RWTH Aachen University , Ahornstraße 55 , D-52074 Aachen , Germany
| | - Christoph Janzen
- Fraunhofer Institute for Laser Technology (ILT) , Steinbachstr. 15 , 52074 Aachen , Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry , JARA-SOFT , RWTH Aachen University , Landoltweg 1 , 52056 Aachen , Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , D-64287 Darmstadt , Germany
| | - Dominik Wöll
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Felix A Plamper
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- Institute of Physical Chemistry , TU Bergakademie Freiberg , Leipziger Straße 29 , 09599 Freiberg , Germany . ; ; Tel: +49-3731-39-2139
| |
Collapse
|
4
|
Schneider S, Janssen C, Klindtworth E, Mergel O, Möller M, Plamper F. Influence of Polycation Composition on Electrochemical Film Formation. Polymers (Basel) 2018; 10:E429. [PMID: 30966464 PMCID: PMC6415213 DOI: 10.3390/polym10040429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
The effect of polyelectrolyte composition on the electrodeposition onto platinum is investigated using a counterion switching approach. Film formation of preformed polyelectrolytes is triggered by oxidation of hexacyanoferrates(II) (ferrocyanide), leading to polyelectrolyte complexes, which are physically crosslinked by hexacyanoferrate(III) (ferricyanide) ions due to preferential ferricyanide/polycation interactions. In this study, the electrodeposition of three different linear polyelectrolytes, namely quaternized poly[2-(dimethylamino)ethyl methacrylate] (i.e., poly{[2-(methacryloyloxy)ethyl]trimethylammonium chloride}; PMOTAC), quaternized poly[2-(dimethylamino)ethyl acrylate] (i.e., poly{[2-(acryloyloxy)ethyl]trimethylammonium chloride}; POTAC), quaternized poly[N-(3-dimethylaminopropyl)methacrylamide] (i.e., poly{[3-(methacrylamido)propyl]trimethylammonium chloride}; PMAPTAC) and different statistical copolymers of these polyelectrolytes with N-(3-aminopropyl)methacrylamide (APMA), are studied. Hydrodynamic voltammetry utilizing a rotating ring disk electrode (RRDE) shows the highest deposition efficiency DE for PMOTAC over PMAPTAC and over POTAC. Increasing incorporation of APMA weakens the preferred interaction of the quaternized units with the hexacyanoferrate(III) ions. At a sufficient APMA content, electrodeposition can thus be prevented. Additional electrochemical quartz crystal microbalance measurements reveal the formation of rigid polyelectrolyte films being highly crosslinked by the hexacyanoferrate(III) ions. Results indicate a different degree of water incorporation into these polyelectrolyte films. Hence, by adjusting the polycation composition, film properties can be tuned, while different chemistries can be incorporated into these electrodeposited thin hydrogel films.
Collapse
Affiliation(s)
- Sabine Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Corinna Janssen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Elisabeth Klindtworth
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Olga Mergel
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Martin Möller
- DWI Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany.
| | - Felix Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| |
Collapse
|
5
|
Ameseder F, Radulescu A, Khaneft M, Lohstroh W, Stadler AM. Homogeneous and heterogeneous dynamics in native and denatured bovine serum albumin. Phys Chem Chem Phys 2018; 20:5128-5139. [DOI: 10.1039/c7cp08292d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quasielastic incoherent neutron spectroscopy experiments reveal that chemical denaturation significantly modifies the internal dynamics of bovine serum albumin.
Collapse
Affiliation(s)
- Felix Ameseder
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science JCNS
- Forschungszentrum Jülich GmbH, Outstation at MLZ
- 85747 Garching
- Germany
| | - Marina Khaneft
- Jülich Centre for Neutron Science JCNS
- Forschungszentrum Jülich GmbH, Outstation at MLZ
- 85747 Garching
- Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum
- Technische Universität München
- 85747 Garching
- Germany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| |
Collapse
|
6
|
Hebbeker P, Steinschulte AA, Schneider S, Plamper FA. Balancing Segregation and Complexation in Amphiphilic Copolymers by Architecture and Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4091-4106. [PMID: 28221801 DOI: 10.1021/acs.langmuir.6b04602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Segregation is a well-known principle for micellization, as solvophobic components try to minimize interactions with other entities (such as solvent) by self-assembly. An opposite principle is based on complexation (or coacervation), leading to the coassembly/association of different components. Most cases in the literature rely on only one of these modes, though the classical micellization scheme (such as spherical micelles, wormlike micelles, and vesicles) can be enriched by a subtle balance of segregation and complexation. Because of their counteraction, micellar constructs with unprecedented structure and behavior could be obtained. In this feature, systems are highlighted, which are between both mechanisms, and we study concentration, architecture, and confinement effects. Systems with inter- and intramolecular interactions are presented, and the effects of polymer topology and monomer sequence on the resulting structures are discussed. It is shown that complexation can lead to altered micellization behavior as the complex of one hydrophobic and one hydrophilic component can have a very low surface tension toward the solvent. Then, the more soluble component is enriched at the surface of the complex and acts as a microsurfactant. Although segregation dominates for amphiphilic copolymers in solution, the effect of the complexation can be enhanced by branching (change of architecture). Another possibility to enhance the complexation is by confining copolymers in a (pseudo-) 2D environment (like the one available at liquid-liquid interfaces). These observations show how new structural features can be achieved by tuning the subtle balance between segregation and complexation/solubilization.
Collapse
Affiliation(s)
- Pascal Hebbeker
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Alexander A Steinschulte
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Felix A Plamper
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
7
|
Ghavami A, Kobayashi H, Winkler RG. Internal dynamics of microgels: A mesoscale hydrodynamic simulation study. J Chem Phys 2017; 145:244902. [PMID: 28049314 DOI: 10.1063/1.4972893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyze the dynamics of polymers in a microgel system under different swelling conditions. A microgel particle consists of coarse-grained linear polymers which are tetra-functionally crosslinked and undergoes conformational changes in response to the external stimuli. Here, a broad range of microgel sizes, extending from tightly collapsed to strongly swollen particles, is considered. In order to account for hydrodynamic interactions, the microgel is embedded in a multiparticle collision dynamics fluid while hydrophobic attraction is modelled by an attractive Lennard-Jones potential and swelling of ionic microgels is described through the Debye-Hückel potential. The polymer dynamics is analyzed in terms of the monomer mean square displacement and the intermediate scattering function S(q, t). The scattering function decays in a stretched-exponential manner, with a decay rate exhibiting a crossover from a collective diffusive dynamics at low magnitudes of the wavevector q to a hydrodynamic-dominated dynamics at larger q. There is little difference between the intermediate scattering functions of microgels under good solvent conditions and strongly swollen gels, but strongly collapsed gels exhibit a faster decay at short times and hydrodynamic interactions become screened. In addition, we present results for the dynamics of the crosslinks, which exhibit an unexpected, semiflexible polymer-like dynamics.
Collapse
Affiliation(s)
- Ali Ghavami
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Hideki Kobayashi
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roland G Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
8
|
|
9
|
Han K, Go D, Hoenders D, Kuehne AJC, Walther A. Switchable Supracolloidal Coassembly of Microgels Mediated by Host/Guest Interactions. ACS Macro Lett 2017; 6:310-314. [PMID: 35650908 DOI: 10.1021/acsmacrolett.7b00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supramolecular engineering of multibody colloidal systems provides flexible ways of manipulating superstructures and material properties. We investigate a coassembling microgel (MG) system, in which host- and guest-modified MG partners coassemble by molecular recognition, and show in detail how electrostatic repulsion needs to be balanced for the supramolecular recognition to take place. We observe a gradual change from repellent MGs to stable clusters and ordered flocculates upon decreasing electrostatic repulsion. The adaptive nature of the multivalent interactions embedded in the soft MG shell leads to kinetically trapped scenarios and fibril formation from spherical building blocks.
Collapse
Affiliation(s)
- Kang Han
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Dennis Go
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry and Freiburg Materials Research Center, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 21 & 31, 79104 Freiburg, Germany
- Freiburg
Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Alexander J. C. Kuehne
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry and Freiburg Materials Research Center, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 21 & 31, 79104 Freiburg, Germany
- Freiburg
Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
10
|
Abstract
Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
Collapse
Affiliation(s)
- Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Walter Richtering
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
| |
Collapse
|
11
|
Mohanty PS, Nöjd S, Bergman MJ, Nägele G, Arrese-Igor S, Alegria A, Roa R, Schurtenberger P, Dhont JKG. Dielectric spectroscopy of ionic microgel suspensions. SOFT MATTER 2016; 12:9705-9727. [PMID: 27808335 DOI: 10.1039/c6sm01683a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The determination of the net charge and size of microgel particles as a function of their concentration, as well as the degree of association of ions to the microgel backbone, has been pursued in earlier studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle interactions that interfere with the characterization of single-particle properties. Here we introduce dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The advantage of dielectric spectroscopy over other experimental methods is that the polarization due to mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated relaxation modes, which are due to the polarization of the mobile charges within the microgel particles, the diffuse double layer around the particles, and the polymer backbone. Expressions for the full frequency dependence of the electrode-polarization contribution to the measured dielectric response are derived, and a theory is proposed for the polarization resulting from the mobile charges within the microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net charge and the size of the microgel particles are found to be strongly varying with concentration. A very small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of chemical association of protons to the polymer backbone.
Collapse
Affiliation(s)
- P S Mohanty
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - S Nöjd
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - M J Bergman
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - G Nägele
- Institute of Complex Systems ICS-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. and Heinrich-Heine Universität Düsseldorf, Department of Physics, D-40225 Düsseldorf, Germany and JARA-SOFT, 52425 Jülich, Germany
| | - S Arrese-Igor
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center, 20018 San Sebastián, Spain
| | - A Alegria
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center, 20018 San Sebastián, Spain and Universidad del País Vasco (UPV/EHU), Departamento de Física de Materiales, 20080 San Sebastián, Spain
| | - R Roa
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
| | - P Schurtenberger
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - J K G Dhont
- Institute of Complex Systems ICS-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. and Heinrich-Heine Universität Düsseldorf, Department of Physics, D-40225 Düsseldorf, Germany and JARA-SOFT, 52425 Jülich, Germany
| |
Collapse
|