1
|
Graham JJ, Subramani SV, Yang X, Russell TM, Zhang F, Keten S. Charting the envelope of mechanical properties of synthetic silk fibers through predictive modeling of the drawing process. SCIENCE ADVANCES 2025; 11:eadr3833. [PMID: 40053589 PMCID: PMC11887809 DOI: 10.1126/sciadv.adr3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
A major challenge in synthesizing strong and tough protein fibers based on spider silk motifs is understanding the coupling between protein sequence and the postspin drawing process. We clarify how drawing-induced elongational force affects ordering, chain extension, interchain contacts, and molecular mobility through mesoscale simulations of silk-based fibers. We show that these emergent features can be used to predict mechanical property enhancements arising from postspin drawing. Simulations recapitulate a purely process-dependent mechanical property envelope in which order enhances fiber strength while preserving toughness. The relationship between chain extension and crystalline domain alignment observed in simulations is validated by Raman spectroscopy of wet-spun fibers. Property enhancements attributed to the progression of anisotropic extension are verified by mechanical tests of drawn silk fibers and justified by theory. These findings elucidate how drawing enhances properties of protein-based fibers and shed light on how to incorporate this effect into predictive models.
Collapse
Affiliation(s)
- Jacob J. Graham
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shri V. Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinyan Yang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Timothy M. Russell
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Wang Y, Li Z, Niu K, Xia W, Giuntoli A. A Molecular Dynamics Study of Mechanical and Conformational Properties of Conjugated Polymer Thin Films. Macromolecules 2024; 57:5130-5142. [PMID: 38882199 PMCID: PMC11171455 DOI: 10.1021/acs.macromol.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Understanding and predicting the mechanical and conformational properties of conjugated polymer (CP) thin films are a central focus in flexible electronic device research. Employing molecular dynamics simulations with an architecture-transferable chemistry-specific coarse-grained (CG) model of poly(3-alkylthiophene)s (P3ATs), developed by using an energy renormalization approach, we investigate the mechanical and conformational behavior of P3AT thin films during deformation. The density profiles and measures of local mobility identify a softer interfacial layer for all films, the thickness of which does not depend on M w or side-chain length. Remarkably, Young's modulus measured via nanoindentation is more sensitive to M w than for tensile tests, which we attribute to distinct deformation mechanisms. High-M w thin films show increased toughness, whereas longer side-chain lengths of P3AT resulted in lower Young's modulus. Fractures in low-M w thin films occur through chain pullout due to insufficient chain entanglement and crazing in the plastic region. Importantly, stretching promoted both chain alignment and longer conjugation lengths of P3AT, potentially enhancing its electronic properties. For instance, at room temperature, stretching P3HT thin films to 150% increases the conjugated length of P3HT thin films from 2.7 nm to 4.7 nm, aligning with previous experimental findings and all-atom simulation results. Furthermore, high-M w thin films display elevated friction forces due to the chain accumulation on the indenter, with negligible variations in the friction coefficient across all thin film systems. These findings offer valuable insights that enhance our understanding and guide the rational design of CP thin films in flexible electronics.
Collapse
Affiliation(s)
- Yang Wang
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaofan Li
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Andrea Giuntoli
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Reda H, Chazirakis A, Behbahani AF, Savva N, Harmandaris V. Revealing the Role of Chain Conformations on the Origin of the Mechanical Reinforcement in Glassy Polymer Nanocomposites. NANO LETTERS 2024; 24:148-155. [PMID: 37983090 DOI: 10.1021/acs.nanolett.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Understanding the mechanism of mechanical reinforcement in glassy polymer nanocomposites is of paramount importance for their tailored design. Here, we present a detailed investigation, via atomistic simulation, of the coupling between density, structure, and conformations of polymer chains with respect to their role in mechanical reinforcement. Probing the properties at the molecular level reveals that the effective mass density as well as the rigidity of the matrix region changes with filler volume fraction, while that of the interphase remains constant. The origin of the mechanical reinforcement is attributed to the heterogeneous chain conformations in the vicinity of the nanoparticles, involving a 2-fold mechanism. In the low-loading regime, the reinforcement comes mainly from a thin, single-molecule, 2D-like layer of adsorbed polymer segments on the nanoparticle, whereas in the high-loading regime, the reinforcement is dominated by the coupling between train and bridge conformations; the latter involves segments connecting neighboring nanoparticles.
Collapse
Affiliation(s)
- Hilal Reda
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anthony Chazirakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR 71110, Greece
| | - Alireza Foroozani Behbahani
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR 71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR 71110, Greece
| | - Nikos Savva
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Vagelis Harmandaris
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR 71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR 71110, Greece
| |
Collapse
|
4
|
Lin G, Gao W, Chen P, Sun W, Chizhik SA, Makhaniok AA, Melnikova GB, Kuznetsova TA. Atomic insights into thickness-dependent deformation mechanism and mechanical properties of Ag/PMMA ultra-thin nanofilms. NANOSCALE ADVANCES 2023; 5:4934-4949. [PMID: 37705765 PMCID: PMC10496913 DOI: 10.1039/d3na00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
In this work, the nanoindentations on bilayer composite nanofilms composed of metal Ag and polymer PMMA were simulated using molecular dynamics. The effects of the thickness of Ag and PMMA on the elastic moduli of the composite films were analyzed from Hertz contact theory, dislocation evolution and atomic migration. The results show that the maximum penetration depth that the Hertz model could well describe is about 6 Å, and this limiting value is almost independent on the film thickness. The deformation mode of the Ag films gradually changes from bending mode to indentation mode with an increase in Ag thickness, which improves the elastic modulus of the composite films. The rule of mixtures could give a theoretical prediction about the elastic modulus of the composite film close to the nanoindentation, and Hertz theory could also be used as long as the thickness of Ag films exceeded a certain value. The introduction of a PMMA layer impedes the development of dislocation in the Ag layer and improves the elastic limit of the composite films. This work provides an important basis for experimentally measuring the overall elastic modulus of metal/polymer composite film based on nanoindentation or extracting the elastic modulus of metal film from the overall indentation response of the composite film.
Collapse
Affiliation(s)
- Gaojian Lin
- State Key Laboratory of Explosion Science and Technology, School of Mechantronic Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
- Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing 10081 China
| | - Wenpeng Gao
- State Key Laboratory of Explosion Science and Technology, School of Mechantronic Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
- Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing 10081 China
| | - Pengwan Chen
- State Key Laboratory of Explosion Science and Technology, School of Mechantronic Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
- Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing 10081 China
| | - Weifu Sun
- State Key Laboratory of Explosion Science and Technology, School of Mechantronic Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
- Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing 10081 China
| | - Sergei A Chizhik
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus Minsk 220072 Republic of Belarus
| | - Alexander A Makhaniok
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus Minsk 220072 Republic of Belarus
| | - Galina B Melnikova
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus Minsk 220072 Republic of Belarus
| | - Tatiana A Kuznetsova
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus Minsk 220072 Republic of Belarus
| |
Collapse
|
5
|
Physicochemical Modifications on Thin Films of Poly(Ethylene Terephthalate) and Its Nanocomposite with Expanded Graphite Nanostructured by Ultraviolet and Infrared Femtosecond Laser Irradiation. Polymers (Basel) 2022; 14:polym14235243. [PMID: 36501637 PMCID: PMC9737047 DOI: 10.3390/polym14235243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, the formation of laser-induced periodic surface structures (LIPSS) on the surfaces of thin films of poly(ethylene terephthalate) (PET) and PET reinforced with expanded graphite (EG) was studied. Laser irradiation was carried out by ultraviolet (265 nm) and near-infrared (795 nm) femtosecond laser pulses, and LIPSS were formed in both materials. In all cases, LIPSS had a period close to the irradiation wavelength and were formed parallel to the polarization of the laser beam, although, in the case of UV irradiation, differences in the formation range were observed due to the different thermal properties of the neat polymer in comparison to the composite. To monitor the modification of the physicochemical properties of the surfaces after irradiation as a function of the laser wavelength and of the presence of the filler, different techniques were used. Contact angle measurements were carried out using different reference liquids to measure the wettability and the solid surface free energies. The initially hydrophilic surfaces became more hydrophilic after ultraviolet irradiation, while they evolved to become hydrophobic under near-infrared laser irradiation. The values of the surface free energy components showed changes after nanostructuring, mainly in the polar component. Additionally, for UV-irradiated surfaces, adhesion, determined by the colloidal probe technique, increased, while, for NIR irradiation, adhesion decreased. Finally, nanomechanical properties were measured by the PeakForce Quantitative Nanomechanical Mapping method, obtaining maps of elastic modulus, adhesion, and deformation. The results showed an increase in the elastic modulus in the PET/EG, confirming the reinforcing action of the EG in the polymer matrix. Additionally, an increase in the elastic modulus was observed after LIPSS formation.
Collapse
|
6
|
Singh PP, Ranganathan R. Tensile and Viscoelastic Behavior in Nacre-Inspired Nanocomposites: A Coarse-Grained Molecular Dynamics Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3333. [PMID: 36234462 PMCID: PMC9565923 DOI: 10.3390/nano12193333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Organisms hold an extraordinarily evolutionary advantage in forming complex, hierarchical structures across different length scales that exhibit superior mechanical properties. Mimicking these structures for synthesizing high-performance materials has long held a fascination and has seen rapid growth in the recent past thanks to high-resolution microscopy, design, synthesis, and testing methodologies. Among the class of natural materials, nacre, found in mollusk shells, exhibits remarkably high mechanical strength and toughness. The highly organized "brick and mortar" structure at different length scales is a basis for excellent mechanical properties and the capability to dissipate energy and propagation in nacre. Here, we employ large-scale atomistic coarse-grained molecular dynamics simulations to study the mechanical and viscoelastic behavior of nacre-like microstructures. Uniaxial tension and oscillatory shear simulations were performed to gain insight into the role of complex structure-property relationships. Specifically, the role played by the effect of microstructure (arrangement of the crystalline domain) and polymer-crystal interactions on the mechanical and viscoelastic behavior is elucidated. The tensile property of the nanocomposite was seen to be sensitive to the microstructure, with a staggered arrangement of the crystalline tablets giving rise to a 20-30% higher modulus and lower tensile strength compared to a columnar arrangement. Importantly, the staggered microstructure is shown to have a highly tunable mechanical behavior with respect to the polymer-crystal interactions. The underlying reasons for the mechanical behavior are explained by showing the effect of polymer chain mobility and orientation and the load-carrying capacity for the constituents. Viscoelastic responses in terms of the storage and loss moduli and loss tangent are studied over three decades in frequency and again highlight the differences brought about by the microstructure. We show that our coarse-grained models offer promising insights into the design of novel biomimetic structures for structural applications.
Collapse
|
7
|
Wang G, Najafi F, Ho K, Hamidinejad M, Cui T, Walker GC, Singh CV, Filleter T. Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guorui Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Farzin Najafi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Kevin Ho
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Teng Cui
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Gilbert C. Walker
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
8
|
Lee JH, Kwak JB. Measurement of Shear Strengths of Cu Films Using Precise Chip Forming. MATERIALS 2022; 15:ma15030948. [PMID: 35160891 PMCID: PMC8838378 DOI: 10.3390/ma15030948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023]
Abstract
The mechanical properties of thin films are under-researched because of the challenges associated with conventional experimental methods. We demonstrate a technique for determining the intrinsic shear strength and strain of thin films using a nano-cutting technique based on an orthogonal cutting model with precise control of the cutting system. In this study, electroplated Cu films with thicknesses of 1.5 μm and 5 μm and a sputtered Cu film with a thickness of 130 nm were fabricated to evaluate the mechanical strength. Experiments revealed a shear strength of approximately 310 MPa with a shear strain of 1.57 for the electroplated Cu film and a shear strength of 389 MPa with a shear strain of 2.03 for the sputtered Cu film. In addition, X-ray diffraction analysis was performed to correlate the experimental results.
Collapse
Affiliation(s)
- Jeong-Heon Lee
- School of Mechanical System and Automotive Engineering, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea;
| | - Jae B. Kwak
- School of Mechanical System and Automotive Engineering, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea;
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea
- Correspondence:
| |
Collapse
|
9
|
Ke J, Ying P, Du Y, Zou B, Sun H, Zhang J. Delamination of MoS 2/SiO 2 interfaces under nanoindentation. Phys Chem Chem Phys 2022; 24:15991-16002. [DOI: 10.1039/d2cp00074a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide (MoS2) mounted on silicon dioxide (SiO2) constitutes the fundamental functional components of many nanodevices, but its mechanical properties, which are crucial for the device design and fabrication, are...
Collapse
|
10
|
Chiang CC, Breslin J, Weeks S, Meng Z. Dynamic Mechanical Behaviors of Nacre-Inspired Graphene-Polymer Nanocomposites Depending on Internal Nanostructures. EXTREME MECHANICS LETTERS 2021; 49:101451. [PMID: 34541269 PMCID: PMC8445040 DOI: 10.1016/j.eml.2021.101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nacre, a natural nanocomposite with a brick-and-mortar structure existing in the inner layer of mollusk shells, has been shown to optimize strength and toughness along the laminae (in-plane) direction. However, such natural materials more often experience impact load in the direction perpendicular to the layers (i.e., out-of-plane direction) from predators. The dynamic responses and deformation mechanisms of layered structures under impact load in the out-of-plane direction have been much less analyzed. This study investigates the dynamic mechanical behaviors of nacre-inspired layered nanocomposite films using a model system that comprises alternating multi-layer graphene (MLG) and polymethyl methacrylate (PMMA) phases. With a validated coarse-grained molecular dynamics simulation approach, we systematically study the mechanical properties and impact resistance of the MLG-PMMA nanocomposite films with different internal nanostructures, which are characterized by the layer thickness and number of repetitions while keeping the total volume constant. We find that as the layer thickness decreases, the effective modulus of the polymer phase confined by the adjacent MLG phases increases. Using ballistic impact simulations to explore the dynamic responses of nanocomposite films in the out-of-plane direction, we find that the impact resistance and dynamic failure mechanisms of the films depend on the internal nanostructures. Specifically, when each layer is relatively thick, the nanocomposite is more prone to spalling-like failure induced by compressive stress waves from the projectile impact. Whereas, when there are more repetitions, and each layer becomes relatively thin, a high-velocity projectile sequentially penetrates the nanocomposite film. In the low projectile velocity regime, the film develops crazing-like deformation zones in PMMA phases. We also show that the position of the soft PMMA phase relative to the stiff graphene sheets plays a significant role in the ballistic impact performance of the investigated films. Our study provides insights into the effect of nanostructures on the dynamic mechanical behaviors of layered nanocomposites, which can lead to effective design strategies for impact-resistant films.
Collapse
Affiliation(s)
- Cho-Chun Chiang
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
| | - Jane Breslin
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
| | | | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
| |
Collapse
|
11
|
Soudmand BH, Shelesh‐Nezhad K, Salimi Y. A combined differential scanning calorimetry‐dynamic mechanical thermal analysis approach for the estimation of constrained phases in thermoplastic polymer nanocomposites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Behzad H. Soudmand
- Division of Plastics and Composites Engineering, Department of Mechanical Engineering University of Tabriz Tabriz Iran
| | - Karim Shelesh‐Nezhad
- Division of Plastics and Composites Engineering, Department of Mechanical Engineering University of Tabriz Tabriz Iran
| | - Yaghob Salimi
- Division of Plastics and Composites Engineering, Department of Mechanical Engineering University of Tabriz Tabriz Iran
| |
Collapse
|
12
|
Chen R, Wang Z, Li S, Du H. A novel degradation mechanism of the elastic modulus of wet polymer substrates under nanoindentation. SOFT MATTER 2020; 16:5009-5019. [PMID: 32436554 DOI: 10.1039/d0sm00645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrated that the formation and solidification of a continuous confined water film played a very important role in changing the elastic modulus of the wet polymer substrate in a nanoindentation process by a coarse-grained molecular dynamics simulation of this process. It was found that as the water content increased, the elastic modulus of the wet polymer substrate showed a non-monotonic change. Relative to the dry polymer substrate, the elastic modulus of the wet polymer first decreased. This is because the appearance of a confined water film caused the force between the polymer substrate and the indenter to change from repulsion to attraction. Subsequently, as the confined water film gradually solidified and then weakened, the elastic modulus of the wet polymer slowly increased and then rapidly increased due to a large number of interstitial water molecules gradually penetrating the polymer substrate. Therefore, it is unreasonable to explain the wet polymer degradation during nanoindentation only from the plasticization and anti-plasticization effects based on the hydrogen bond breaking and formation during stretching. The above-mentioned results will help to more comprehensively understand the degradation mechanism of the polymers' encounter with water, thus promoting further practical applications for polymers.
Collapse
Affiliation(s)
- Ruling Chen
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | |
Collapse
|
13
|
Xia W, Lan T. Interfacial Dynamics Governs the Mechanical Properties of Glassy Polymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tian Lan
- Formulation, Automation & Materials Science, Core R&D, The Dow Chemical Company, 400 Arcola Rd., Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
14
|
Ikeshima D, Miyamoto K, Yonezu A. Molecular deformation mechanism of polycarbonate during nano-indentation: Molecular dynamics simulation and experimentation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Song J, Kahraman R, Collinson DW, Xia W, Brinson LC, Keten S. Temperature effects on the nanoindentation characterization of stiffness gradients in confined polymers. SOFT MATTER 2019; 15:359-370. [PMID: 30421764 DOI: 10.1039/c8sm01539b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The stiffening of polymers near inorganic fillers plays an important role in strengthening polymer nanocomposites, and recent advances in metrology have allowed us to sample such effects using local mechanical measurement techniques such as nanoindentation and atomic force microscopy. A general understanding of temperature and confinement effects on the measured stiffness gradient length-scale ξint is lacking however, which convolutes molecular interpretation of local property measurements. Using coarse-grained molecular dynamics and finite element nanoindentation simulations, we show that the measured ξint increases with temperature in highly confined polymer systems, a dependence which acts in the opposite direction in systems with low confinement. These disparate trends are closely related to the polymer's viscoelastic state and the resulting changes in incompressibility and dissipative ability as the polymer transitions from glassy to rubbery. At high temperatures above the glass transition temperature, a geometrically confined system restricts the viscous dissipation of the applied load by the increasingly incompressible polymer. The indentation causes a dramatic build-up of hydrostatic pressure near the confining surface, which contributes to an enlarged measurement of ξint. By contrast, a less-confined system allows the pressure to dissipate via intermolecular motion, thus lowering the measured ξint with increased temperature above the glass transition temperature. These findings suggest that the well-established thin film-nancomposite analogy for polymer mobility near interfaces can be convoluted when measuring local mechanical properties, as the viscoelastic state and geometric confinement of the polymer can affect the nanomechanical response during indentation purely from continuum effects.
Collapse
Affiliation(s)
- Jake Song
- Dept. of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA
| | - Rıdvan Kahraman
- Dept. of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA
| | - David W Collinson
- Dept. of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, NC 27708, USA. and Dept. of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA.
| | - Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - L Catherine Brinson
- Dept. of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, NC 27708, USA. and Center for Hierarchical Materials Design, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA
| | - Sinan Keten
- Dept. of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA. and Dept. of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA and Center for Hierarchical Materials Design, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA
| |
Collapse
|
16
|
Zhang M, Li Y, Kolluru PV, Brinson LC. Determination of Mechanical Properties of Polymer Interphase Using Combined Atomic Force Microscope (AFM) Experiments and Finite Element Simulations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | - L. Catherine Brinson
- Mechanical Engineering & Material Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Genix AC, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov AP. Enhancing the Mechanical Properties of Glassy Nanocomposites by Tuning Polymer Molecular Weight. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33601-33610. [PMID: 30203957 DOI: 10.1021/acsami.8b13109] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The addition of nanoparticles to a polymer matrix is a well-known process to improve the mechanical properties of polymers. Many studies of mechanical reinforcement in polymer nanocomposites (PNCs) focus on rubbery matrices; however, much less effort concentrates on the factors controlling the mechanical performance of the technologically important glassy PNCs. This paper presents a study of the effect of the polymer molecular weight (MW) on the overall mechanical properties of glassy PNCs with attractive interaction by using Brillouin light scattering. We found that the mechanical moduli (bulk and shear) have a nonmonotonic dependence on MW that cannot be predicted by simple rule of mixtures. The moduli increase with increasing MW up to 100 kg/mol followed by a drop at higher MW. We demonstrate that the change in the mechanical properties of PNCs can be associated with the properties of the interfacial polymer layer. The latter depend on the interfacial chain packing and stretching, as well as polymer bridging, which vary differently with the MW of the polymer. These competing contributions lead to the observed nonmonotonic variations of the glassy PNC moduli with MW. Our work provides a simple, cost-effective, and efficient way to control the mechanical properties of glassy PNCs by tuning the polymer chain length. Our finding can be beneficial for the rational design of PNCs with desired mechanical performance.
Collapse
Affiliation(s)
- Anne-Caroline Genix
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Vera Bocharova
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Alexander Kisliuk
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Bobby Carroll
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Sheng Zhao
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Julian Oberdisse
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Alexei P Sokolov
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
18
|
Hansoge NK, Huang T, Sinko R, Xia W, Chen W, Keten S. Materials by Design for Stiff and Tough Hairy Nanoparticle Assemblies. ACS NANO 2018; 12:7946-7958. [PMID: 29975847 DOI: 10.1021/acsnano.8b02454] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Matrix-free polymer-grafted nanocrystals, called assembled hairy nanoparticles (aHNPs), can significantly enhance the thermomechanical performance of nanocomposites by overcoming nanoparticle dispersion challenges and achieving stronger interfacial interactions through grafted polymer chains. However, effective strategies to improve both the mechanical stiffness and toughness of aHNPs are lacking given the general conflicting nature of these two properties and the large number of molecular parameters involved in the design of aHNPs. Here, we propose a computational framework that combines multiresponse Gaussian process metamodeling and coarse-grained molecular dynamics simulations to establish design strategies for achieving optimal mechanical properties of aHNPs within a parametric space. Taking poly(methyl methacrylate) grafted to high-aspect-ratio cellulose nanocrystals as a model nanocomposite, our multiobjective design optimization framework reveals that the polymer chain length and grafting density are the main influencing factors governing the mechanical properties of aHNPs, in comparison to the nanoparticle size and the polymer-nanoparticle interfacial interactions. In particular, the Pareto frontier, that marks the upper bound of mechanical properties within the design parameter space, can be achieved when the weight percentage of nanoparticles is above around 60% and the grafted chains exceed the critical length scale governing transition into the semidilute brush regime. We show that theoretical scaling relationships derived from the Daoud-Cotton model capture the dependence of the critical length scale on graft density and nanoparticle size. Our established modeling framework provides valuable insights into the mechanical behavior of these hairy nanoparticle assemblies at the molecular level and allows us to establish guidelines for nanocomposite design.
Collapse
Affiliation(s)
- Nitin K Hansoge
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
| | - Tianyu Huang
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
| | - Robert Sinko
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
- Department of Mechanical Engineering , Northern Illinois University , 590 Garden Road , DeKalb , Illinois 60115 , United States
| | - Wenjie Xia
- Department of Civil and Environmental Engineering , North Dakota State University , 1410 14th Avenue N , Fargo , North Dakota 58105 , United States
- Center for Hierarchical Materials Design , Northwestern University , 2205 Tech Drive , Evanston , Illinois 60208-3109 , United States
| | - Wei Chen
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
- Center for Hierarchical Materials Design , Northwestern University , 2205 Tech Drive , Evanston , Illinois 60208-3109 , United States
| | - Sinan Keten
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
- Center for Hierarchical Materials Design , Northwestern University , 2205 Tech Drive , Evanston , Illinois 60208-3109 , United States
- Department of Civil and Environmental Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
| |
Collapse
|
19
|
Xia W, Song J, Hsu DD, Keten S. Side-group size effects on interfaces and glass formation in supported polymer thin films. J Chem Phys 2018; 146:203311. [PMID: 28571359 DOI: 10.1063/1.4976702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies on glass-forming polymers near interfaces have emphasized the importance of molecular features such as chain stiffness, side-groups, molecular packing, and associated changes in fragility as key factors that govern the magnitude of Tg changes with respect to the bulk in polymer thin films. However, how such molecular features are coupled with substrate and free surface effects on Tg in thin films remains to be fully understood. Here, we employ a chemically specific coarse-grained polymer model for methacrylates to investigate the role of side-group volume on glass formation in bulk polymers and supported thin films. Our results show that bulkier side-groups lead to higher bulk Tg and fragility and are associated with a pronounced free surface effect on overall Tg depression. By probing local Tg within the films, however, we find that the polymers with bulkier side-groups experience a reduced confinement-induced increase in local Tg near a strongly interacting substrate. Further analyses indicate that this is due to the packing frustration of chains near the substrate interface, which lowers the attractive interactions with the substrate and thus lessens the surface-induced reduction in segmental mobility. Our results reveal that the size of the polymer side-group may be a design element that controls the confinement effects induced by the free surface and substrates in supported polymer thin films. Our analyses provide new insights into the factors governing polymer dynamics in bulk and confined environments.
Collapse
Affiliation(s)
- Wenjie Xia
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| | - Jake Song
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| | - David D Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| | - Sinan Keten
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| |
Collapse
|
20
|
Chattaraj S, Pant P, Nanavati H. Inter-relationships between mechanical properties of glassy polymers from nanoindentation and uniaxial compression. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Nazarabady MM, Farzi G. Morphology control to design p(acrylic acid)/silica nanohybrids with controlled mechanical properties. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Tam LH, Chow CL, Lau D. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach. NANOTECHNOLOGY 2018; 29:024001. [PMID: 29057750 DOI: 10.1088/1361-6528/aa9537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.
Collapse
Affiliation(s)
- Lik-Ho Tam
- School of Transportation Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, People's Republic of China
| | | | | |
Collapse
|
23
|
Schneider H, Saalwächter K, Roos M. Complex Morphology of the Intermediate Phase in Block Copolymers and Semicrystalline Polymers As Revealed by 1H NMR Spin Diffusion Experiments. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Horst Schneider
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Matthias Roos
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany St, Cambridge, Massachusetts 02139-4208, United States
| |
Collapse
|
24
|
Vogt BD. Mechanical and viscoelastic properties of confined amorphous polymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24529] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bryan D. Vogt
- Department of Polymer Engineering; University of Akron; Akron Ohio 44325
| |
Collapse
|
25
|
Wang D, Russell TP. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01459] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Zhang M, Askar S, Torkelson JM, Brinson LC. Stiffness Gradients in Glassy Polymer Model Nanocomposites: Comparisons of Quantitative Characterization by Fluorescence Spectroscopy and Atomic Force Microscopy. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00917] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Min Zhang
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shadid Askar
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - L. Catherine Brinson
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Cheng S, Carroll B, Bocharova V, Carrillo JM, Sumpter BG, Sokolov AP. Focus: Structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J Chem Phys 2017; 146:203201. [DOI: 10.1063/1.4978504] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby Carroll
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
28
|
Huang H, Dobryden I, Ihrner N, Johansson M, Ma H, Pan J, Claesson PM. Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite. J Colloid Interface Sci 2017; 494:204-214. [PMID: 28160705 DOI: 10.1016/j.jcis.2017.01.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
In polymer nanocomposites, particle-polymer interactions influence the properties of the matrix polymer next to the particle surface, providing different physicochemical properties than in the bulk matrix. This region is often referred to as the interphase, but detailed characterization of its properties remains a challenge. Here we employ two atomic force microscopy (AFM) force methods, differing by a factor of about 15 in probing rate, to directly measure the surface nanomechanical properties of the transition region between filler particle and matrix over a controlled temperature range. The nanocomposite consists of poly(ethyl methacrylate) (PEMA) and poly(isobutyl methacrylate) (PiBMA) with a high concentration of hydrophobized silica nanoparticles. Both AFM methods demonstrate that the interphase region around a 40-nm-sized particle located on the surface of the nanocomposite could extend to 55-70nm, and the interphase exhibits a gradient distribution in surface nanomechanical properties. However, the slower probing rate provides somewhat lower numerical values for the surface stiffness. The analysis of the local glass transition temperature (Tg) of the interphase and the polymer matrix provides evidence for reduced stiffness of the polymer matrix at high particle concentration, a feature that we attribute to selective adsorption. These findings provide new insight into understanding the microstructure and mechanical properties of nanocomposites, which is of importance for designing nanomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; KTH Royal Institute of Technology, School of Chemical Sciences and Engineering, Department of Chemistry, Surface and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden.
| | - Illia Dobryden
- KTH Royal Institute of Technology, School of Chemical Sciences and Engineering, Department of Chemistry, Surface and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Niklas Ihrner
- KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Mats Johansson
- KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Houyi Ma
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jinshan Pan
- KTH Royal Institute of Technology, School of Chemical Sciences and Engineering, Department of Chemistry, Surface and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Per M Claesson
- KTH Royal Institute of Technology, School of Chemical Sciences and Engineering, Department of Chemistry, Surface and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden; SP Technical Research Institute of Sweden, SP Chemistry, Materials and Surfaces, Box 5607, SE-11486 Stockholm, Sweden.
| |
Collapse
|
29
|
Xia W, Song J, Jeong C, Hsu DD, Phelan FR, Douglas JF, Keten S. Energy-Renormalization for Achieving Temperature Transferable Coarse-Graining of Polymer Dynamics. Macromolecules 2017; 50:10.1021/acs.macromol.7b01717. [PMID: 30996475 PMCID: PMC6463524 DOI: 10.1021/acs.macromol.7b01717] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bottom-up prediction of the properties of polymeric materials based on molecular dynamics simulation is a major challenge in soft matter physics. Coarse-grained (CG) models are often employed to access greater spatiotemporal scales required for many applications, but these models normally experience significantly altered thermodynamics and highly accelerated dynamics due to the reduced number of degrees of freedom upon coarse-graining. While CG models can be calibrated to meet certain properties at particular state points, there is unfortunately no temperature transferable and chemically specific coarse-graining method that allows for modeling of polymer dynamics over a wide temperature range. Here, we pragmatically address this problem by "correcting" for deviations in activation free energies that occur upon coarse-graining the dynamics of a model polymeric material (polystyrene). In particular, we propose a new strategy based on concepts drawn from the Adam-Gibbs (AG) theory of glass formation. Namely we renormalize the cohesive interaction strength and effective interaction length-scale parameters to modify the activation free energy. We show that this energy-renormalization method for CG modeling allows accurate prediction of atomistic dynamics over the Arrhenius regime, the non-Arrhenius regime of glass formation, and even the non-equilibrium glassy regime, thus allowing for the predictive modeling of dynamic properties of polymer over the entire range of glass formation. Our work provides a practical scheme for establishing temperature transferable coarse-grained models for predicting and designing the properties of polymeric materials.
Collapse
Affiliation(s)
- Wenjie Xia
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, Evanston, Illinois 60208-3109, United States
| | - Jake Song
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Cheol Jeong
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David D. Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Frederick R. Phelan
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
30
|
Meng Z, Bessa MA, Xia W, Kam Liu W, Keten S. Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01508] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhaoxu Meng
- Department
of Civil and Environmental Engineering and ‡Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| | - Miguel A. Bessa
- Department
of Civil and Environmental Engineering and ‡Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| | - Wenjie Xia
- Department
of Civil and Environmental Engineering and ‡Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| | - Wing Kam Liu
- Department
of Civil and Environmental Engineering and ‡Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| | - Sinan Keten
- Department
of Civil and Environmental Engineering and ‡Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| |
Collapse
|