1
|
Liu S, Chen W, Xiao L, Zhao Z, Liu F, Lu S, Chen C, Luo W, Jiang L, Li Y. Robust Osteoconductive β-Tricalcium Phosphate/L-poly(lactic acid) Membrane via Orientation-Strengthening Technology. ACS Biomater Sci Eng 2023; 9:5293-5303. [PMID: 37606611 DOI: 10.1021/acsbiomaterials.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
L-poly(lactic acid) (PLLA) is a biodegradable material with multiple biomedical application potentials, especially as a membrane for guided bone regeneration. In terms of its low strength and poor osteogenic activity, improving these two properties is the key to resolve the limitations of PLLA for bone-associated applications. Herein, an orientation-strengthening technology (OST) was developed to reinforce PLLA's mechanical strength by introducing biocompatible β-tricalcium phosphate (β-TCP) to improve the crystallinity of PLLA, allowing for the formation of a highly oriented architecture to acquire an advanced membrane with high mechanical property. Furthermore, the addition of β-TCP nanoparticles significantly promotes the osteogenic activity of the composites. The tensile strength of the membrane containing 5 wt % β-TCP was 220 MPa, which was 4-folds that of the native polylactic acid fabricated via the conventional method. The oriented microstructure enhanced both the mechanical strength and the osteogenic activity of the material. The parallel grooves on the material surface are similar to the mineralized collagen fibers on the bone surface, which promoted the growth and differentiation of osteoblasts, with β-TCP further contributing to the osteoconductive effect. The combination of β-TCP and orientation-strengthening effect endows the material with higher mechanical properties and bioactivities, which provides an advanced manufacturing strategy for the preparation of PLLA-based materials for bone repair.
Collapse
Affiliation(s)
- Shengyang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weisin Chen
- Department of Orthopaedics, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lan Xiao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
| | - Zheng Zhao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fangrui Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shunyi Lu
- Department of Orthopaedics, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Can Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Luo
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Libo Jiang
- Department of Orthopaedics, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Lukas Sadowski P, Singh A, Daniel Luo H, Michael Majcher J, Urosev I, Rothenbroker M, Kapishon V, Niels Smeets M, Hoare T. Functionalized poly(oligo(lactic acid) methacrylate)-block-poly(oligo(ethylene glycol) methacrylate) block copolymers: A synthetically tunable analogue to PLA-PEG for fabricating drug-loaded nanoparticles. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Kalelkar PP, Geng Z, Cox B, Finn MG, Collard DM. Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly(lactic acid) surfaces. Colloids Surf B Biointerfaces 2021; 211:112242. [PMID: 34929482 DOI: 10.1016/j.colsurfb.2021.112242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022]
Abstract
We have modified the surface of poly(lactic acid) (PLA) by bromination in the presence of N-bromosuccinimide (NBS) under UV irradiation. This new approach to impart functionality to the surface does not effect the bulk of the material. Brominated PLA surfaces served as initiators for atom-transfer radical polymerization (SI-ATRP) of 2-(methacryloyloxy)ethyl]trimethylammonium chloride, a quaternary ammonium methacrylate (QMA). Grafting of poly(QMA) brushes rendered PLA films hydrophilic and these films displayed a three-order of magnitude increase in antimicrobial efficacy against Gram-negative bacteria such as Escherichia coli as compared to unmodified PLA. The two-step strategy described here to modify PLA surface represents a useful route to modified PLA materials for biomedical and antimicrobial packaging applications.
Collapse
Affiliation(s)
- Pranav P Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Zhishuai Geng
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Bronson Cox
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - David M Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
4
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Gazzotti S, Ortenzi MA, Farina H, Disimino M, Silvani A. Carvacrol- and Cardanol-Containing 1,3-Dioxolan-4-ones as Comonomers for the Synthesis of Functional Polylactide-Based Materials. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Gazzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Hermes Farina
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Mariapina Disimino
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
6
|
Kalelkar PP, Collard DM. Tricomponent Amphiphilic Poly(oligo(ethylene glycol) methacrylate) Brush-Grafted Poly(lactic acid): Synthesis, Nanoparticle Formation, and In Vitro Uptake and Release of Hydrophobic Dyes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
7
|
Kalelkar PP, Geng Z, Finn MG, Collard DM. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups. Biomacromolecules 2019; 20:3366-3374. [DOI: 10.1021/acs.biomac.9b00504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Rijpkema SJ, Toebes BJ, Maas MN, Kler NRM, Wilson DA. Designing Molecular Building Blocks for Functional Polymersomes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sjoerd J. Rijpkema
- Institute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - B. Jelle Toebes
- Institute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Marijn N. Maas
- Institute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Noël R. M. Kler
- Institute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
9
|
Plummer CM, Zhou H, Zhu W, Huang H, Liu L, Chen Y. Mild halogenation of polyolefins using an N-haloamide reagent. Polym Chem 2018. [DOI: 10.1039/c8py00013a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology for the chlorination of PE and PP without the use of chlorine gas.
Collapse
Affiliation(s)
- Christopher M. Plummer
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Houbo Zhou
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Wen Zhu
- Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing
- China
| | - Huahua Huang
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Lixin Liu
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yongming Chen
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
10
|
Kalelkar PP, Collard DM. Thiol-substituted copolylactide: synthesis, characterization and post-polymerization modification using thiol–ene chemistry. Polym Chem 2018. [DOI: 10.1039/c7py01930k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copolylactide that is substituted with pendent thiol groups (thiol-PL) undergoes coupling with a variety of electrophiles under mild conditions via thiol–ene addition.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - David M. Collard
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
11
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|
12
|
Zhou H, Chen Y, Plummer CM, Huang H, Chen Y. Facile and efficient bromination of hydroxyl-containing polymers to synthesize well-defined brominated polymers. Polym Chem 2017. [DOI: 10.1039/c7py00283a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article demonstrates a new post-modification method to synthesize well-defined brominated polymers based on the bromination of hydroxyl-containing polymers.
Collapse
Affiliation(s)
- Houbo Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yi Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Christopher M. Plummer
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Huahua Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yongming Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
13
|
Longo JM, Sanford MJ, Coates GW. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships. Chem Rev 2016; 116:15167-15197. [PMID: 27936619 DOI: 10.1021/acs.chemrev.6b00553] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.
Collapse
Affiliation(s)
- Julie M Longo
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - Maria J Sanford
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| |
Collapse
|