1
|
Bourely J, De Sousa L, Fumeaux N, Vorobyov O, Beyer C, Briand D. Biodegradable materials as sensitive coatings for humidity sensing in S-band microwave frequencies. MICRO AND NANO ENGINEERING 2023. [DOI: 10.1016/j.mne.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
2
|
Dong M, Jiao D, Zheng Q, Wu ZL. Recent progress in fabrications and applications of functional hydrogel films. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
3
|
Zhang Y, Zhang C, Wang R, Tan W, Gu Y, Yu X, Zhu L, Liu L. Development and challenges of smart actuators based on water-responsive materials. SOFT MATTER 2022; 18:5725-5741. [PMID: 35904079 DOI: 10.1039/d2sm00519k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-responsive (WR) materials, due to their controllable mechanical response to humidity without energy actuation, have attracted lots of attention to the development of smart actuators. WR material-based smart actuators can transform natural humidity to a required mechanical motion and have been widely used in various fields, such as soft robots, micro-generators, smart building materials, and textiles. In this paper, the development of smart actuators based on different WR materials has been reviewed systematically. First, the properties of different biological WR materials and the corresponding actuators are summarized, including plant materials, animal materials, and microorganism materials. Additionally, various synthetic WR materials and their related applications in smart actuators have also been introduced in detail, including hydrophilic polymers, graphene oxide, carbon nanotubes, and other synthetic materials. Finally, the challenges of the WR actuator are analyzed from the three perspectives of actuator design, control methods, and compatibility, and the potential solutions are also discussed. This paper may be useful for the development of not only soft actuators that are based on WR materials, but also smart materials applied to renewable energy.
Collapse
Affiliation(s)
- Yiwei Zhang
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Ruiqian Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Gu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaobin Yu
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Lizhong Zhu
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| |
Collapse
|
4
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
5
|
Seidi F, Zhao WF, Xiao HN, Jin YC, Saeb MR, Zhao CS. Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2474-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. BIOFOULING 2020; 36:646-659. [PMID: 32718200 DOI: 10.1080/08927014.2020.1796983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Eric Schönemann
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
| | - Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Andre Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Laschewsky A, Rosenhahn A. Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1056-1071. [PMID: 30048142 DOI: 10.1021/acs.langmuir.8b01789] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of zwitterionic compounds in nature has incited their frequent use in designing biomimetic materials. Therefore, zwitterionic polymers are a thriving field. A particular interest for this particular polymer class has currently focused on their use in establishing neutral, low-fouling surfaces. After highlighting strategies to prepare model zwitterionic surfaces as well as those that are more suitable for practical purposes relying strongly on radical polymerization methods, we present recent efforts to diversify the structure of the hitherto quite limited variety of zwitterionic monomers and of the derived polymers. We identify key structural variables, consider their influence on essential properties such as overall hydrophilicity and long-term stability, and discuss promising targets for the synthesis of new variants.
Collapse
Affiliation(s)
- André Laschewsky
- Institut für Chemie, Universität Potsdam , Karl-Liebknechtstr. 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstr. 69 , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytische Chemie-Biogrenzflächen , Ruhr-Universität Bochum , Universitätsstr. 150 NC , 44801 Bochum , Germany
| |
Collapse
|
8
|
Koc J, Schönemann E, Amuthalingam A, Clarke J, Finlay JA, Clare AS, Laschewsky A, Rosenhahn A. Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1552-1562. [PMID: 30376714 DOI: 10.1021/acs.langmuir.8b02799] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer's precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| | - Eric Schönemann
- Department of Chemistry , University Potsdam , 14476 Potsdam-Golm , Germany
| | - Ajitha Amuthalingam
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Andre Laschewsky
- Department of Chemistry , University Potsdam , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute of Applied Polymer Research IAP , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| |
Collapse
|
9
|
Pandiyarajan CK, Genzer J. Thermally Activated One-Pot, Simultaneous Radical and Condensation Reactions Generate Surface-Anchored Network Layers from Common Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- C. K. Pandiyarajan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 060-0808, Japan
| |
Collapse
|
10
|
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018; 47:7739-7782. [PMID: 30221267 DOI: 10.1039/c8cs00531a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further post-modification of the corresponding chemically functional polymers after polymerization. Synthetic concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications highlighted.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
11
|
Jelken J, Pandiyarajan CK, Genzer J, Lomadze N, Santer S. Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30844-30851. [PMID: 30114362 DOI: 10.1021/acsami.8b09580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the formation of stimuli-responsive structured hydrogel thin films whose pattern geometry can be adjusted on demand and tuned reversibly by varying solvent quality or by changing temperature. The hydrogel films, ∼100 nm in thickness, were prepared by depositing layers of random copolymers comprising N-isopropylacrylamide and ultraviolet (UV)-active methacryloyloxybenzophenone units onto solid substrates. A two-beam interference pattern technique was used to cross-link the selected areas of the film; any unreacted material was extracted using ethanol after UV light-assisted cross-linking. In this way, we produced nanoholes, perfectly ordered structures with a narrow size distribution, negligible tortuosity, adjustable periodicity, and a high density. The diameter of the circular holes ranged from a few micrometers down to several tens of nanometers; the hole periodicity could be adjusted readily by changing the optical period of the UV interference pattern. The holes were reversibly closed and opened by swelling/deswelling the polymer networks in the presence of ethanol and water, respectively, at various temperatures. The reversible regulation of the hole diameter can be repeated many times within a few seconds. The hydrogel sheet with circular holes periodically arranged may also be transferred onto different substrates and be employed as tunable templates for the deposition of desired substances.
Collapse
Affiliation(s)
- Joachim Jelken
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| | - C K Pandiyarajan
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Nino Lomadze
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| |
Collapse
|
12
|
Becker G, Deng Z, Zober M, Wagner M, Lienkamp K, Wurm FR. Surface-attached poly(phosphoester)-hydrogels with benzophenone groups. Polym Chem 2018. [DOI: 10.1039/c7py01777d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photo-reactive poly(phosphoester)s (PPEs) forming surface-attached PPE-networks and hydrogels are presented.
Collapse
Affiliation(s)
- Greta Becker
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
- Graduate School Materials Science in Mainz
- 55128 Mainz
| | - Zhuoling Deng
- Bioactive Polymer Synthesis and Surface Engineering Group
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)
- 79110 Freiburg
- Germany
| | - Maria Zober
- Bioactive Polymer Synthesis and Surface Engineering Group
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)
- 79110 Freiburg
- Germany
| | - Manfred Wagner
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)
- 79110 Freiburg
- Germany
| | | |
Collapse
|
13
|
Pandiyarajan CK, Genzer J. Effect of Network Density in Surface-Anchored Poly(N-isopropylacrylamide) Hydrogels on Adsorption of Fibrinogen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1974-1983. [PMID: 28112519 DOI: 10.1021/acs.langmuir.6b04434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We describe a simple approach to generate surface-attached biocompatible hydrogels with tunable cross-link density and employ them to study the effect of gel structure on protein adsorption. Using free-radical polymerization, we synthesize a series of random copolymers comprising N-isopropylacrylamide (NIPAm) and the photoactive curing agent 4-methacryloyl-oxy-benzophenone (MABP) of mole fractions ranging from 2.5 to 10%. We deposit a thin film of the precursor copolymer (∼150 nm) on a silicon or glass substrate, which is precoated with monolayers of benzophenone-silane, then cross-link it through UV irradiation at 365 nm (dose ≈ 6-10 J/cm2) to generate surface-attached networks. A systematic investigation of the network properties such as gel fraction, cross-link density, and swelling ratio reveals that gels with higher MABP content (≥5%) produce densely cross-linked hydrophobic networks with low or no swelling in an aqueous medium. We study the adsorption of fibrinogen (Fg) on such hydrogel substrates and establish that the amount of adsorbed Fg depends on the degree of cross-linking and the swelling capacity of the networks. Specifically, although Fg adsorbs heavily on denser networks, loosely bound gels that swell in aqueous medium repel proteins. We attribute the latter behavior to entropic shielding and size-exclusion factors.
Collapse
Affiliation(s)
- C K Pandiyarajan
- Department of Chemical & Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695-7905, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo 060-0817, Japan
| |
Collapse
|