1
|
Shibata I, Sugawara-Narutaki A, Takahashi R. Polymerization-induced self-assembly enables access to diverse highly ordered structures through kinetic and thermodynamic pathways. Chem Sci 2025:d5sc01703c. [PMID: 40191129 PMCID: PMC11969376 DOI: 10.1039/d5sc01703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Polymerization-induced self-assembly (PISA) has emerged as a powerful technique for generating microphase-separated structures, but research has primarily focused on systems exhibiting "disordered" structures. Here, we demonstrate the facile construction of various highly ordered microphase-separated structures via PISA, with and without kinetic control through manipulation of the glass transition temperature (T g) of the core-forming blocks. We synthesized diblock copolymers in an ionic liquid (40 wt% solute) by polymerizing styrene or 2-hydroxyethyl acrylate from one end of poly(ethylene glycol). When using polystyrene as the core-forming block, its high T g relative to the polymerization temperature resulted in the formation of kinetically trapped structures, including pure hexagonal close-packed (HCP) spheres exhibiting X-ray diffraction peaks up to the 17th-order. Conversely, lower-T g core-forming block [poly(2-hydroxyethyl acrylate)] led to thermodynamically stable, highly ordered structures, including a double-gyroid morphology. These results highlight the efficacy of PISA for generating diverse, highly ordered microphase-separated structures from simple diblock copolymers and demonstrate its potential to access structures unattainable through conventional ex situ polymerization.
Collapse
Affiliation(s)
- Ibuki Shibata
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo 2-3-10, Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Rintaro Takahashi
- Department of Macromolecular Science, Graduate School of Science, The University of Osaka 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
2
|
Guo W, Zhang X, Zhang C, Zhang X. Free radical copolymerization of 1,3-cyclooctadiene with maleic anhydride or N-substituted maleimides: a simple way to obtain high-performance transparent plastics. Chem Commun (Camb) 2024; 60:14228-14231. [PMID: 39535056 DOI: 10.1039/d4cc05100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the free radical copolymerization of 1,3-cyclooctadiene and maleic anhydride or N-substituted maleimides. The obtained alternating copolymers have a fine-tuned Tg (ranging from 62 °C to 300 °C) and excellent thermal resistance and optical properties (up to 90% transmissivity).
Collapse
Affiliation(s)
- Wenqi Guo
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Xun Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Hou W, Yin X, Zhou Y, Zhou Z, Liu Z, Du J, Shi Y, Chen Y. Kinetically Controlled Preparation of Worm-like Micelles with Tunable Diameter/Length and Structural Stability. J Am Chem Soc 2024; 146:24094-24104. [PMID: 39141924 DOI: 10.1021/jacs.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Anisotropic nanoparticles such as worm-like micelles have aroused much attention due to their promising applications from templates to drug delivery. The fabrication of worm-like micelles with tunable structural stability and control over their diameter and length is of great importance but still challenging. Herein, we report a kinetically controlled ring-opening metathesis polymerization-induced self-assembly (ROMPISA) for the robust preparation of kinetically trapped worm-like micelles with tunable diameter/length at enlarged experimental windows by the rational manipulation of kinetic factors, including solvent property, temperature, and π-π stacking effects. The resultant worm structures were thermodynamically metastable and capable of excellent structural stability at room temperature due to the kinetic trapping effect. At elevated temperatures, these thermodynamically metastable worms could undergo morphology evolution into vesicular structures in a controlled manner. Moreover, the structural stability of worms could also be significantly enhanced by in situ cross-linking. Overall, this kinetically controlled ROMPISA opens a new avenue for PISA chemistry that is expected to prepare "smart" polymer materials by manipulating kinetic factors.
Collapse
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiuzhe Yin
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqing Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianzhong Du
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Farmer MH, Musa OM, Armes SP. Combining Crystallization-Driven Self-Assembly with Reverse Sequence Polymerization-Induced Self-Assembly Enables the Efficient Synthesis of Hydrolytically Degradable Anisotropic Block Copolymer Nano-objects Directly in Concentrated Aqueous Media. J Am Chem Soc 2024; 146:16926-16934. [PMID: 38842535 PMCID: PMC11191691 DOI: 10.1021/jacs.4c06299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Herein we combine the well-known processing advantages conferred by polymerization-induced self-assembly (PISA) with crystallization-driven self-assembly (CDSA) to achieve the efficient synthesis of hydrolytically degradable, highly anisotropic block copolymer nano-objects directly in aqueous solution at 30% w/w solids. This new strategy involves a so-called reverse sequence PISA protocol that employs poly(l-lactide) (PLLA) as the crystallizable core-forming block and poly(N,N'-dimethylacrylamide) (PDMAC) as the water-soluble non-ionic coronal block. Such syntheses result in PDMAC-rich anisotropic nanoparticles. Depending on the target diblock copolymer composition, either rod-like nanoparticles or diamond-like platelets can be obtained. Furthermore, N-Acryloylmorpholine is briefly evaluated as an alternative hydrophilic vinyl monomer to DMAC. Given that the PLLA block can undergo either hydrolytic or enzymatic degradation, such nanoparticles are expected to offer potential applications in various fields, including next-generation sustainable Pickering emulsifiers.
Collapse
Affiliation(s)
- Matthew
A. H. Farmer
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
5
|
Buksa H, Johnson EC, Chan DHH, McBride RJ, Sanderson G, Corrigan RM, Armes SP. Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate. Biomacromolecules 2024; 25:2990-3000. [PMID: 38696732 PMCID: PMC11094727 DOI: 10.1021/acs.biomac.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.
Collapse
Affiliation(s)
- Hubert Buksa
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Derek H. H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Rory J. McBride
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - George Sanderson
- GEO
Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K.
| | - Rebecca M. Corrigan
- School
of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
6
|
György C, Armes SP. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew Chem Int Ed Engl 2023; 62:e202308372. [PMID: 37409380 PMCID: PMC10952376 DOI: 10.1002/anie.202308372] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.
Collapse
Affiliation(s)
- Csilla György
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| | - Steven P. Armes
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
7
|
Liao D, Chen A, Pang W, Tan C, Bashir MS. Visible light‐induced metal‐free atom transfer radical (co)polymerization of maleimides using commercial organocatalysts. J Appl Polym Sci 2022. [DOI: 10.1002/app.53540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daohong Liao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Ao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Tan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui China
| | - Muhammad Sohail Bashir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui China
| |
Collapse
|
8
|
Zhang S, Dedovets D, Feng A, Wang K, Pera-Titus M. Pickering Interfacial Catalysis for Aerobic Alcohol Oxidation in Oil Foams. J Am Chem Soc 2022; 144:1729-1738. [PMID: 35073074 PMCID: PMC8815424 DOI: 10.1021/jacs.1c11207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oil foams stabilized by surface-active catalytic particles bearing fluorinated chains and Pd nanoparticles allowed fast and efficient aerobic oxidation of a variety of aromatic and aliphatic alcohols compared to bulk catalytic systems at ambient O2 pressure. High foam stability was achieved at low particle concentration (<1 wt %) provided that the contact angle locates in the range 41°-73°. The catalytic performance was strongly affected by the foaming properties, with 7-10 times activity increase in pure O2 compared to nonfoam systems. Intermediate foam stability was required to achieve good catalytic activity, combining large interfacial area and high gas exchange rate. Particles were conveniently recycled with high foamability and catalytic efficiency maintained for at least seven consecutive runs.
Collapse
Affiliation(s)
- Shi Zhang
- UMI
3464 CNRS, Solvay, Eco-Efficient Products
and Processes Laboratory (E2P2L), 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China,Laboratoire
du Futur, UMR 5258 CNRS, Université
de Bordeaux, 178 Av.
Dr Albert Schweitzer, 33603 Cedex, Pessac, France
| | - Dmytro Dedovets
- Laboratoire
du Futur, UMR 5258 CNRS, Université
de Bordeaux, 178 Av.
Dr Albert Schweitzer, 33603 Cedex, Pessac, France
| | - Andong Feng
- UMI
3464 CNRS, Solvay, Eco-Efficient Products
and Processes Laboratory (E2P2L), 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China,Laboratoire
du Futur, UMR 5258 CNRS, Université
de Bordeaux, 178 Av.
Dr Albert Schweitzer, 33603 Cedex, Pessac, France
| | - Kang Wang
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marc Pera-Titus
- UMI
3464 CNRS, Solvay, Eco-Efficient Products
and Processes Laboratory (E2P2L), 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China,Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.,
| |
Collapse
|
9
|
Zhou J, Ranjith P. Insights into interfacial behaviours of surfactant and polymer: A molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Gao Y, Xiang Z, Zhao X, Wang G, Qi C. Pickering Emulsions Stabilized by Diblock Copolymer Worms Prepared via Reversible Addition-Fragmentation Chain Transfer Aqueous Dispersion Polymerization: How Does the Stimulus Sensitivity Affect the Rate of Demulsification? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11695-11706. [PMID: 34579524 DOI: 10.1021/acs.langmuir.1c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive Pickering emulsions exhibit promising application in industry owing to the integration of the high storage stability with on-demand demulsification. In this study, stimuli-responsive Pickering emulsions stabilized by poly[oligo(ethylene glycol) methyl ether methacrylate]15-b-poly(diacetone acrylamide)120 (E15D120) worms were indicated, in which E15D120 worms were prepared via reversible addition-fragmentation chain transfer-based aqueous dispersion polymerization using thermo-sensitive POEGMA15 as both the stabilizer block and macro-chain transfer agent. The factors influencing the morphologies of copolymers during polymerization-induced self assembly have been investigated. A series of different morphological polymer nanoparticles including spheres, worms, and vesicles could be produced through rational synthesis. E15D120 worms demonstrated excellent emulsifying performances and could be used as emulsifiers to form n-dodecane-in-water Pickering emulsions at a low content. The formed n-dodecane-in-water Pickering emulsions revealed a slow demulsification at pH 10 or 70 °C or pH 10/70 °C combinations, and several hours were needed for the demulsification of Pickering emulsions. However, n-dodecane-in-water Pickering emulsions displayed a rapid demulsification (∼10 min) at an elevated temperature, such as 90 °C. The different demulsification rates were attributed to different sensitivities of E15D120 worms to external stimuli. Pickering emulsions integrating a rapid responsive demulsification with a slow one would be well satisfactory on different occasions.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zhe Xiang
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xi Zhao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province 414006, China
| | - Guoxiang Wang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province 414006, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
11
|
Bag S, Ghosh S, Paul S, Khan MEH, De P. Styrene-Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100501. [PMID: 34597451 DOI: 10.1002/marc.202100501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Alternating sequencing of styrene-maleimide/maleic anhydride (S-MI/MA) in the copolymer chain is known for a long time. But since early 2000, this class of copolymers has been extensively studied using various living/controlled polymerization techniques to design S-MI/MA alternating copolymers with tunable molecular weight, narrow dispersity (Ð), and precise chain-end functionality. The widespread diverse applications of this polymeric backbone are due to its ease of synthesis, cheap starting materials, high precision in alternating sequencing, and facile post-polymerization functionalization with simple organic reactions. Recently, S-MI/MA alternating copolymers have been rediscovered as novel polymers with unprecedented emissive behavior. It outperforms the traditional fluorophores with no aggregation caused quenching (ACQ), aqueous solubility, and greater cell viability. Herein, the origin of alternating sequence, synthesis, and recent (2010-Present) developments in applications of these polymers in different fields are elaborately discussed, including the advantages of the unconventional luminogenic property. This review article also highlights the future research directions of the versatile S-MI/MA copolymers.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Soumyadeep Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Md Ezaz Hasan Khan
- School of General Education, College of the North Atlantic - Qatar, Arab League Street, Doha, 24449, Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
12
|
Xu XH, Jiang ZQ, Xu L, Zhou L, Liu N, Wu ZQ. Precise Synthesis of π-Conjugated Block Copolymers and Polymerization-Induced Chiral Self-Assembly toward Helical Nanofibers with Circularly Polarized Luminescence. ACS APPLIED BIO MATERIALS 2021; 4:7213-7221. [PMID: 35006953 DOI: 10.1021/acsabm.1c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precise synthesis and efficient self-assembly of semiconducting polymers are of great interest. Herein, we report the controlled synthesis of π-conjugated poly(phenyl isocyanide)-b-poly(phenyleneethylene) (PPI-b-PPE) copolymers via chain extension of ethynyl 4-iodobenzene initiated by Pd(II)-terminated helical poly(phenyl isocyanide) (PPI). The in-situ-generated block copolymers self-assembled into various supramolecular architectures depending on the PPE length. The helical PPI segment induced the block copolymers with an appropriate PPE length self-assemble into helical nanofibers with a controlled size and defined helicity. Interestingly, the chiral assemblies of the block copolymers exhibit intense optical activity and emit clear circularly polarized luminescence.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zhi-Qiang Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
13
|
Li JW, Chen M, Zhou JM, Pan CY, Zhang WJ, Hong CY. RAFT dispersion copolymerization of styrene and N-methacryloxysuccinimide: Promoted morphology transition and post-polymerization cross-linking. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Sane M, Dighe V, Patil R, Hassan PA, Gawali S, Patravale V. Bivalirudin and sirolimus co-eluting coronary stent: Potential strategy for the prevention of stent thrombosis and restenosis. Int J Pharm 2021; 600:120403. [PMID: 33711467 DOI: 10.1016/j.ijpharm.2021.120403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022]
Abstract
Localized drug delivery with sustained elution characteristics from nanocarrier coated stents represents a viable therapeutic approach to circumvent concerns related to coronary stent therapy. We fabricated a Sirolimus (SRL) and Bivalirudin (BIV) releasing nanoparticles (NPs) coated stent for concurrent mitigation of vascular restenosis and acute stent thrombosis. SRL NPs were prepared by nanoprecipitation method whereas the BIV vesicles were generated using hydrophobic ion pair approach followed by micellization phenomenon. MTT assay and confocal microscopic analysis indicated superior anti-proliferative activity and higher cellular uptake of SRL NPs into human coronary artery smooth muscle cells, respectively. DSC and ATR-FTIR techniques confirmed the formation of complex between BIV and phosphatidylglycerol via some weak physical interactions. More than 2 fold rise in log P value was obtained for DSPG-BIV at 3:1 M ratio compared with native BIV solution. The SAXS analysis indicated formation of oligolamellar vesicles of DSPG-BIV complex which was preferentially entrapped into lipophilic lamellae of vesicles. APTT, PT, and TT tests revealed that the BIV vesicles caused significant prolongation of clotting time compared to native BIV solution. The SEM analysis showed uniform and defect free stent coating. In vitro release study demonstrated that SRL and BIV were eluted in a sustained manner from coated stents.
Collapse
Affiliation(s)
- Mangesh Sane
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400 012, Maharashtra, India
| | - Rucha Patil
- Department of Haemostasis & Thrombosis, National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multi-storeyed Building, KEM Hospital Campus, Parel, Mumbai 400 012, India
| | | | - Santosh Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
15
|
Sobotta FH, Kuchenbrod MT, Grune C, Fischer D, Hoeppener S, Brendel JC. Elucidating preparation-structure relationships for the morphology evolution during the RAFT dispersion polymerization of N-acryloyl thiomorpholine. Polym Chem 2021. [DOI: 10.1039/d0py01697g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Depending on the conditions, nearly monodisperse spherical micelles or complex morphologies are formed during a polymerization induced self-assembly (PISA) process based on the water-soluble monomer N-acryloylthiomorpholine.
Collapse
Affiliation(s)
- Fabian H. Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Maren T. Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Christian Grune
- Pharmaceutical Technology and Biopharmacy
- Institute of Pharmacy
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Dagmar Fischer
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Pharmaceutical Technology
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
16
|
Hunter SJ, Lovett JR, Mykhaylyk OO, Jones ER, Armes SP. Synthesis of diblock copolymer spheres, worms and vesicles via RAFT aqueous emulsion polymerization of hydroxybutyl methacrylate. Polym Chem 2021. [DOI: 10.1039/d1py00517k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RAFT aqueous emulsion polymerization of hydroxybutyl methacrylate using a poly(glycerol monomethacrylate) precursor leads to diblock copolymer spheres, worms or vesicles. A pseudo-phase diagram is constructed and the vesicles are briefly evaluated as a Pickering emulsifier.
Collapse
Affiliation(s)
- Saul J. Hunter
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Joseph R. Lovett
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | | | | | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| |
Collapse
|
17
|
Hunter SJ, Armes SP. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15463-15484. [PMID: 33325720 PMCID: PMC7884006 DOI: 10.1021/acs.langmuir.0c02595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Indexed: 05/28/2023]
Abstract
Block copolymer nanoparticles prepared via polymerization-induced self-assembly (PISA) represent an emerging class of organic Pickering emulsifiers. Such nanoparticles are readily prepared by chain-extending a soluble homopolymer precursor using a carefully selected second monomer that forms an insoluble block in the chosen solvent. As the second block grows, it undergoes phase separation that drives in situ self-assembly to form sterically stabilized nanoparticles. Conducting such PISA syntheses in aqueous solution leads to hydrophilic nanoparticles that enable the formation of oil-in-water emulsions. Alternatively, hydrophobic nanoparticles can be prepared in non-polar media (e.g., n-alkanes), which enables water-in-oil emulsions to be produced. In this review, the specific advantages of using PISA to prepare such bespoke Pickering emulsifiers are highlighted, which include fine control over particle size, copolymer morphology, and surface wettability. This has enabled various fundamental scientific questions regarding Pickering emulsions to be addressed. Moreover, block copolymer nanoparticles can be used to prepare Pickering emulsions over various length scales, with mean droplet diameters ranging from millimeters to less than 200 nm.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
18
|
Hunter SJ, Cornel EJ, Mykhaylyk OO, Armes SP. Effect of Salt on the Formation and Stability of Water-in-Oil Pickering Nanoemulsions Stabilized by Diblock Copolymer Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15523-15535. [PMID: 33332972 PMCID: PMC7884014 DOI: 10.1021/acs.langmuir.0c02742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sterically stabilized diblock copolymer nanoparticles are prepared in n-dodecane using polymerization-induced self-assembly. Precursor Pickering macroemulsions are then prepared by the addition of water followed by high-shear homogenization. In the absence of any salt, high-pressure microfluidization of such precursor emulsions leads to the formation of relatively large aqueous droplets with DLS measurements indicating a mean diameter of more than 600 nm. However, systemically increasing the salt concentration produces significantly finer droplets after microfluidization, until a limiting diameter of around 250 nm is obtained at 0.11 M NaCl. The mean size of these aqueous droplets can also be tuned by systematically varying the nanoparticle concentration, applied pressure, and the number of passes through the microfluidizer. The mean number of nanoparticles adsorbed onto each aqueous droplet and their packing efficiency are calculated. SAXS studies conducted on a Pickering nanoemulsion prepared using 0.11 M NaCl confirms that the aqueous droplets are coated with a loosely packed monolayer of nanoparticles. The effect of varying the NaCl concentration within the droplets on their initial rate of Ostwald ripening is investigated using DLS. Finally, the long-term stability of these water-in-oil Pickering nanoemulsions is assessed using analytical centrifugation. The rate of droplet ripening can be substantially reduced by using 0.11 M NaCl instead of pure water. However, increasing the salt concentration up to 0.43 M provided no further improvement in the long-term stability of such nanoemulsions.
Collapse
|
19
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
20
|
Gao Y, Wu X, Qi C. Janus-Like Single-Chain Polymer Nanoparticles as Two-in-One Emulsifiers for Aqueous and Nonaqueous Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11467-11476. [PMID: 32975954 DOI: 10.1021/acs.langmuir.0c01756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exploration of Pickering emulsions is very significant owing to their versatile and important applications in many scopes. In this study, synthesis of a novel kind of single-chain polymer nanoparticle (SCPN) and its stabilized Pickering emulsions were demonstrated. To this end, linear-dendritic diblock copolymers consisting of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) blocks and four-generation dendritic aliphatic polyester blocks (G4) have been first synthesized by the combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization reaction. The subsequent intramolecular cross-linking of the PDMAEMA block of PDMAEMA-b-G4 copolymers in DMF using 1,4-diiodobutane as cross-linkers afforded Janus-like SCPNs that exhibited a cross-linked PDMAEMA head tethered by a short dendritic tail. The molecular weight and distribution together with the structure of polymers were carefully characterized by GPC and NMR spectroscopy. By the employment of the as-synthesized Janus-like SCPNs as Pickering emulsifiers, aqueous and nonaqueous Pickering emulsions including water-in-oil and oil-in-oil as well as ionic liquid-in-oil were generated. Under the same conditions, it was found that the long-term stabilities of Pickering emulsions stabilized by Janus-like SCPNs were superior to those of Pickering emulsions stabilized by their linear quaternized PDMAEMA-b-G4 by CH3I analogous.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xionghui Wu
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
21
|
|
22
|
|
23
|
Wang F, Zhu Y, Wang A. Preparation of Carboxymethyl Cellulose- g- Poly(acrylamide)/Attapulgite Porous Monolith With an Eco-Friendly Pickering-MIPE Template for Ce(III) and Gd(III) Adsorption. Front Chem 2020; 8:398. [PMID: 32528928 PMCID: PMC7262556 DOI: 10.3389/fchem.2020.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their high specific surface and metal-binding functional groups in their crosslinked polymeric networks, monolithic materials incorporating a porous structure have been considered one of the most efficient kinds of adsorbents for rare earth element recovery. Herein, a facile and novel monolithic multi-porous carboxymethyl cellulose-g-poly(acrylamide)/attapulgite was synthesized by free radical polymerization via green vegetable oil-in-water Pickering medium internal phase emulsion (O/W Pickering-MIPEs), which was synergically stabilized by attapulgite and tween-20. The homogenizer rotation speed and time were investigated to form stable Pickering-MIPEs. The effects of different types of oil phase on the formation of Pickering-MIPEs were investigated with stability tests and rheological characterization. The structure and composition of the porous material when prepared with eight kinds of vegetable oil were characterized by FTIR and SEM. The results indicate that the obtained materials, which have abundant interconnected porosity, are comparable to those fabricated with Pickering-HIPE templates. The adsorption experiment demonstrated that the prepared materials have a fast capture rate and high adsorption capacities for Ce(III) and Gd(III), respectively. The saturation adsorption capacities for Ce(III) and Gd(III) are 205.48 and 216.73 mg/g, respectively, which can be reached within 30 min. Moreover, the monolithic materials exhibit excellent regeneration ability and reusability. This work provides a feasible and eco-friendly pathway for the construction of a multi-porous adsorbent for adsorption and separation applications.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
24
|
Gibson RR, Cornel EJ, Musa OM, Fernyhough A, Armes SP. RAFT dispersion polymerisation of lauryl methacrylate in ethanol–water binary mixtures: synthesis of diblock copolymer vesicles with deformable membranes. Polym Chem 2020. [DOI: 10.1039/c9py01768b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diblock copolymer vesicles with deformable membranes are prepared via RAFT dispersion polymerisation of lauryl methacrylate in an 80 : 20 w/w ethanol–water mixture; visible light irradiation allows facile RAFT chain-end removal from these nano-objects.
Collapse
Affiliation(s)
- R. R. Gibson
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - E. J. Cornel
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
25
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
26
|
Affiliation(s)
- Fei Lv
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
28
|
Yang P, Ning Y, Neal TJ, Jones ER, Parker BR, Armes SP. Block copolymer microparticles comprising inverse bicontinuous phases prepared via polymerization-induced self-assembly. Chem Sci 2019; 10:4200-4208. [PMID: 31015951 PMCID: PMC6460954 DOI: 10.1039/c9sc00303g] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Traditionally, post-polymerization processing routes have been used to obtain a wide range of block copolymer morphologies. However, this self-assembly approach is normally performed at rather low copolymer concentration, which precludes many potential applications. Herein, we report a facile method for the preparation of block copolymer particles exhibiting complex internal morphology via polymerization-induced self-assembly (PISA). More specifically, a series of diblock copolymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) alternating copolymerization of styrene (St) with N-phenylmaleimide (NMI) using a poly(N,N-dimethylacrylamide) (PDMAC) stabilizer as a soluble precursor. Conducting such PISA syntheses in a 50 : 50 w/w ethanol/methyl ethyl ketone (MEK) mixture leads directly to the formation of micrometer-sized PDMAC-P(St-alt-NMI) diblock copolymer particles at 20% w/w solids. Adjusting the degree of polymerization (DP) of the core-forming P(St-alt-NMI) block to target highly asymmetric copolymer compositions provides convenient access to an inverse bicontinuous phase. TEM studies of intermediate structures provide useful insights regarding the mechanism of formation of this phase. SEM studies indicate that the final copolymer particles comprise perforated surface layers and possess nanostructured interiors. In addition, control experiments using 1,4-dioxane suggest that the high chain mobility conferred by the MEK co-solvent is essential for the formation of such inverse bicontinuous structures. One-pot PISA formulations are reproducible and involve only cheap, commercially available starting materials, so they should be readily amenable to scale-up. This augurs well for the potential use of such nanostructured micrometer-sized particles as new organic opacifiers for paints and coatings.
Collapse
Affiliation(s)
- Pengcheng Yang
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Yin Ning
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Thomas J Neal
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Elizabeth R Jones
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Bryony R Parker
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| |
Collapse
|
29
|
Tilton RD. Opportunities for complex fluids engineering
w
ith nanoparticulate polymer brushes. AIChE J 2018. [DOI: 10.1002/aic.16427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Robert D. Tilton
- Center for Complex Fluids Engineering, Dept. of Chemical Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213
- Center for Complex Fluids Engineering, Dept. of Biomedical Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213
| |
Collapse
|
30
|
Liu W, Zhang S, Qiao Z, Li Q, Li X, Wang H. Facile synthesis and surface activity of poly(ethylene glycol) star polymers with a phosphazene core. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Madsen J, Madden G, Themistou E, Warren NJ, Armes SP. pH-Responsive diblock copolymers with two different fluorescent labels for simultaneous monitoring of micellar self-assembly and degree of protonation. Polym Chem 2018. [DOI: 10.1039/c8py00111a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Facile labelling of both blocks of a pH-responsive diblock copolymer with different fluorophores allows monitoring of polymer aggregation and deprotonation.
Collapse
Affiliation(s)
- Jeppe Madsen
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- Danish Polymer Centre
| | | | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Nicholas J. Warren
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- School of Chemical and Process Engineering
| | | |
Collapse
|
32
|
Xie G, Krys P, Tilton RD, Matyjaszewski K. Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Guojun Xie
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Pawel Krys
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D. Tilton
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
33
|
Tesch M, Kudruk S, Letzel M, Studer A. Orthogonal Click Postfunctionalization of Alternating Copolymers Prepared by Nitroxide-Mediated Polymerization. Chemistry 2017; 23:5915-5919. [DOI: 10.1002/chem.201605639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias Tesch
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Sergej Kudruk
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Matthias Letzel
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
34
|
Yao F, Liu Q, Zhang Z, Zhu X. RAFT Polymerization of Styrene and Maleimide in the Presence of Fluoroalcohol: Hydrogen Bonding Effects with Classical Alternating Copolymerization as Reference. Polymers (Basel) 2017; 9:polym9030089. [PMID: 30970767 PMCID: PMC6432049 DOI: 10.3390/polym9030089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/01/2017] [Indexed: 11/16/2022] Open
Abstract
The impacts of hydrogen bonding on polymerization behavior has been of interest for a long time; however, universality and in-depth understanding are still lacking. For the first time, the effect of hydrogen bonding on the classical alternating-type copolymerization of styrene and maleimide was explored. N-phenylmaleimide (N-PMI)/styrene was chosen as a model monomer pair in the presence of hydrogen bonding donor solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which interacted with N-PMI via hydrogen bonding. Reversible addition-fragmentation chain transfer polymerization (RAFT) technique was used to guarantee the "living" polymerization and thus the homogeneity of chain compositions. In comparison with the polymerization in nonhydrogen bonding donor solvent (toluene), the copolymerization in HFIP exhibited a high rate and a slight deviation from alternating copolymerization tendency. The reactivity ratios of N-PMI and St were revealed to be 0.078 and 0.068, respectively, while the reactivity ratios in toluene were 0.026 and 0.050. These interesting results were reasonably explained by using computer simulations, wherein the steric repulsion and electron induction by the hydrogen bonding between HFIP and NPMI were revealed. This work first elucidated the hydrogen bonding interaction in the classical alternating-type copolymerization, which will enrich the research on hydrogen bonding-induced polymerizations.
Collapse
Affiliation(s)
- Fangjun Yao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Qingqing Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
35
|
Tan J, He J, Li X, Xu Q, Huang C, Liu D, Zhang L. Rapid synthesis of well-defined all-acrylic diblock copolymer nano-objects via alcoholic photoinitiated polymerization-induced self-assembly (photo-PISA). Polym Chem 2017. [DOI: 10.1039/c7py01652b] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of well-defined all-acrylic poly(hydroxyethyl acrylate)-poly(isobornyl acrylate) (PHEA-PIBOA) diblock copolymer nano-objects were prepared by photoinitiated polymerization-induced self-assembly (photo-PISA).
Collapse
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jun He
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Xueliang Li
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Qin Xu
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Li Zhang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
36
|
Yu W, Inam M, Jones JR, Dove AP, O'Reilly RK. Understanding the CDSA of poly(lactide) containing triblock copolymers. Polym Chem 2017. [DOI: 10.1039/c7py01056g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using crystallization driven assembly (CDSA) the simple preparation of well-defined tuneable 1D and 2D structures based on poly(lactide) triblock copolymers is demonstrated.
Collapse
Affiliation(s)
- Wei Yu
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Maria Inam
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Joseph R. Jones
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Andrew P. Dove
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | | |
Collapse
|
37
|
Canning SL, Cunningham VJ, Ratcliffe LPD, Armes SP. Phenyl acrylate is a versatile monomer for the synthesis of acrylic diblock copolymer nano-objects via polymerization-induced self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py01161j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(phenyl acrylate) has a sufficiently high glass transition temperature to enable TEM studies of the morphology of diblock copolymer nano-objects prepared using three different polymerization-induced self-assembly (PISA) formulations.
Collapse
Affiliation(s)
- S. L. Canning
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|