1
|
Xie P, Lu X, Li X, Wen X, Sun J. Mass-Produced Chemically Recyclable Aromatic Polymers with Exceptional Strength and Stability. ACS Macro Lett 2025:735-742. [PMID: 40372202 DOI: 10.1021/acsmacrolett.5c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Developing chemically recyclable polymers that offer ultrahigh mechanical strength, exceptional chemical stability, mild recycling conditions, and scalability for mass production remains a significant challenge. This study presents a novel class of chemically recyclable plastics, synthesized at kilogram scale in the laboratory, by reversibly cross-linking aromatic polyamide macromonomers with boroxines, imine bonds, and hydrogen bonds. These plastics, denoted as PA-B3O3, exhibit an impressive tensile strength of 142.1 MPa, a Young's modulus of 2.39 GPa, a glass transition temperature of ∼211.6 °C, and outstanding chemical resistance to acidic/basic aqueous solutions and organic solvents. PA-B3O3 plastics can be depolymerized in a mixed solvent of N,N-dimethylacetamide and aqueous HCl solution, allowing for efficient recovery of the original amino-terminated polyamide (PA-NH2) via precipitation in selective solvents, even when mixed with polymer waste streams. This study represents a significant advancement toward the practical application of mechanically robust, chemically resistant, and recyclable polymers.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojuan Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Maes S, Badi N, Winne JM, Du Prez FE. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets. Nat Rev Chem 2025; 9:144-158. [PMID: 39891024 DOI: 10.1038/s41570-025-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Dynamic covalent chemistry (DCC) allows the development of thermally (re)processable and recyclable polymer networks, which is a highly attractive feature for new generations of thermoset materials. However, despite a surge in academic interest wherein soon almost any imaginable DCC platform may have been applied in a thermoset formulation, dynamic or reversible covalent polymer networks have so far found only few industrial applications. This Review provides a perspective on the main strategies for the application of DCC in the design and development of bulk thermoset materials, and it presents some of the key hurdles for their industrial implementation. The polymer design strategies and associated chemistries are viewed from the perspective of how 'close to market' their development pathway is, thus providing a roadmap to achieve high-volume breakthrough applications.
Collapse
Affiliation(s)
- Stephan Maes
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan M Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Upadhyay C, Ojha U. Stress-Induced Shape-Shifting Materials Possessing Autonomous Self-Healing and Scratch-Resistant Ability. Chem Asian J 2023; 18:e202201082. [PMID: 36637865 DOI: 10.1002/asia.202201082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Covalent adaptable networks (CANs) capable of both shape-shifting and self-healing ability offer a viable alternative to 4D printing technology to gain access to various complex shapes in a simplified manner. However, most of the reported CANs exhibit shape-shifting ability in the presence of temperature, light or chemical stimuli, which restricts their further utilization as realization of such a controlled environment is not feasible under complex scenarios. Herewith, we report a set of CANs based on a room-temperature exchangeable thia-Michael adduct, which undergoes rearrangement in network topology on application of external stress. These CANs with tensile strength (≤6 MPa) and modulus (≤71.4 MPa) adopt to any programmed shape under application of nominal stress. The CANs also exhibit stress-induced recyclability, self-welding and self-healing ability under ambient conditions. The transparency and ambient condition self-healing ability render these CANs to be utilized as scratch-resistant coatings on display items.
Collapse
Affiliation(s)
- Chandan Upadhyay
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Bahadurpur, UP, 229304, India
| | - Umaprasana Ojha
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Bahadurpur, UP, 229304, India
| |
Collapse
|
5
|
Lee G, Song HY, Choi S, Kim CB, Hyun K, Ahn SK. Harnessing β-Hydroxyl Groups in Poly(β-Amino Esters) toward Robust and Fast Reprocessing Covalent Adaptable Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gyuri Lee
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Subi Choi
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Suk-kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
6
|
Chen S, Feng Y, Zhang Z, Li X, Zhang J, Zhao J. Catalyzed Michael addition, polycondensation, and the related performance of Diels–Alder self‐healing crosslinked polyamides. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shuo Chen
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Yu Feng
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Zhi‐Yuan Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Xiang‐Yuan Li
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jun‐Ying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jing‐Bo Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
7
|
Debnath S, Upadhyay C, Ojha U. Healable, Recyclable, and Programmable Shape Memory Organogels Based on Highly Malleable Catalyst-Free Carboxylate Linkages. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9618-9631. [PMID: 35148046 DOI: 10.1021/acsami.1c24946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of healable and recyclable organogels possessing responsive abilities is mainly hindered by the unavailability of many dynamic covalent linkages that undergo exchange reaction below the boiling temperature of organic swelling medium. Furthermore, the exchange is desired to be effective under catalyst-free conditions to circumvent the issue of catalyst leaching during the swelling process. Especially, imparting swift reversibility to thermostable carboxylate linkages is challenging. In this approach, we have utilized the β-keto anchimeric assistance as the tool to induce swift reversibility into the conventional carboxylate linkage under mild temperature (∼70-90 °C) and catalyst-free conditions. Using this β-keto carboxylate linkage as an associative bond exchange mean, strong (tensile strength = 0.3 MPa) and stretchable (ultimate elongation ≈ 600%) covalent adaptable organogels (CAOs) with anisotropic swelling, remoldable, self-healing, and shape memory ability are derived from commercially available precursors. The shape memory ability of these samples shows dependency on the shape fixing time and can be programmed, targeting further applications. Soft actuators may be fabricated from the CAOs using temperature and solvent as the activating tools. This research demonstrates that the conventional carboxylate linkages can be made labile under mild conditions for further applications.
Collapse
Affiliation(s)
- Suman Debnath
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Bahadurpur, Harbanshganj, Jais 229304, India
| | - Chandan Upadhyay
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Bahadurpur, Harbanshganj, Jais 229304, India
| | - Umaprasana Ojha
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Bahadurpur, Harbanshganj, Jais 229304, India
| |
Collapse
|
8
|
Taplan C, Guerre M, Du Prez FE. Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks. J Am Chem Soc 2021; 143:9140-9150. [PMID: 34121401 DOI: 10.1021/jacs.1c03316] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, β-amino esters, prepared by the aza-Michael addition of an amine to an acrylate moiety, are investigated as building blocks for the formation of dynamic covalent networks. While such amino esters are usually considered as thermally nondynamic adducts, the kinetic model studies presented here show that dynamic covalent exchange occurs via both dynamic aza-Michael reaction and catalyst-free transesterification. This knowledge is transferred to create β-amino ester-based covalent adaptable networks (CANs) with coexisting dissociative and associative covalent dynamic exchange reactions. The ease, robustness, and versatility of this chemistry are demonstrated by using a variety of readily available multifunctional acrylates and amines. The presented CANs are reprocessed via either a dynamic aza-Michael reaction or a catalyst-free transesterification in the presence of hydroxyl moieties. This results in reprocessable, densely cross-linked materials with a glass transition temperature (Tg) ranging from -60 to 90 °C. Moreover, even for the low Tg materials, a high creep resistance was demonstrated at elevated temperatures up to 80 °C. When additional β-hydroxyl group-containing building blocks are applied during the network design, an enhanced neighboring group participation effect allows reprocessing of materials up to 10 times at 150 °C within 30 min while maintaining their material properties.
Collapse
Affiliation(s)
- Christian Taplan
- Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Marc Guerre
- Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium.,Laboratoire des IMRCP, Université de Toulouse, CNRS UMR5623, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
9
|
Yang X, Xie H, Xu Z, Feng J, Fu Q, Li H, Jia Y. Malononitrile‐involved Michael addition polymerization: An efficient and facile route for cyano‐rich polyesters with programmable thermal and mechanical properties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoxia Yang
- School of Textile Materials and Engineering Wuyi University Jiangmen China
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Hongyan Xie
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Zhiguang Xu
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Jiabing Feng
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Qiwei Fu
- College of Material and Textile Engineering Jiaxing University Jiaxing China
| | - Haidong Li
- College of Material and Textile Engineering Jiaxing University Jiaxing China
| | - Yongtang Jia
- School of Textile Materials and Engineering Wuyi University Jiangmen China
| |
Collapse
|
10
|
Fang Z, Shi Y, Zhang Y, Zhao Q, Wu J. Reconfigurable Polymer Networks for Digital Light Processing 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15584-15590. [PMID: 33755414 DOI: 10.1021/acsami.0c23107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To realize a wide range of applications using three-dimensional (3D) printing, it is urgent to develop 3D printing resins with different functions. However, the design freedom of the resin formulation is greatly limited to guarantee fast gelation during 3D printing. Herein, we report a reconfigurable polymer network that is compatible with digital light processing (DLP) 3D printing. The properties of the printed objects can be remanipulated by post-thermal treatment, during which the polymer network undergoes significant changes through the amidation of ester. The Young's modulus could be significantly reduced by 50 times. Specifically, a well-printed rigid part can be completely turned into a low-viscosity liquid. This strategy decouples the printing process and the final material properties, providing an efficient approach to print various functional objects.
Collapse
Affiliation(s)
- Zizheng Fang
- Ningbo Research Institute Zhejiang University, Ningbo 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Yunpeng Shi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, Zhejiang, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qian Zhao
- Ningbo Research Institute Zhejiang University, Ningbo 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Jingjun Wu
- Ningbo Research Institute Zhejiang University, Ningbo 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Debnath S, Kaushal S, Mandal S, Ojha U. Solvent processable and recyclable covalent adaptable organogels based on dynamic trans-esterification chemistry: separation of toluene from azeotropic mixtures. Polym Chem 2020. [DOI: 10.1039/c9py01807g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
New covalent adaptable networks (CANs) possessing processability and recyclability to monomers are desirable as an alternative to traditional plastics to address plastic waste-related issues.
Collapse
Affiliation(s)
- Suman Debnath
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Swaraj Kaushal
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Subhankar Mandal
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Umaprasana Ojha
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| |
Collapse
|
12
|
Chen Z, Yang M, Shi Q, Kuang X, Qi HJ, Wang T. Recycling Waste Circuit Board Efficiently and Environmentally Friendly through Small-Molecule Assisted Dissolution. Sci Rep 2019; 9:17902. [PMID: 31784554 PMCID: PMC6884634 DOI: 10.1038/s41598-019-54045-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
With the increasing amount of electronic waste (e-waste) generated globally, it is an enormous challenge to recycle printed circuit boards (PCBs) efficiently and environmentally friendly. However, conventional recycling technologies have low efficiency and require tough treatment such as high temperature (>200 °C) and high pressure. In this paper, a small-molecule assisted approach based on dynamic reaction was proposed to dissolve thermosetting polymers containing ester groups and recycle electronic components from PCBs. This effective approach operates below 200 °C and the polymer could be dissolved in a short time. It has a remarkable ability to recycle a wide range of commercial PCBs, including boards made of typical anhydride epoxy or polyester substrate. Besides, it is environmentally friendly as even the recycling solution could be reused multiple times. In addition, the wasted solution after recycling could be used for board bonding and damage repair. This work also demonstrates the advantage of using polymers containing ester groups as the PCB substrate in consideration of eco-friendly and efficient recycling.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Yang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qian Shi
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Kuang
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Tiejun Wang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
13
|
Love D, Kim K, Domaille DW, Williams O, Stansbury J, Musgrave C, Bowman C. Catalyst-free, aza-Michael polymerization of hydrazides: polymerizability, kinetics, and mechanistic origin of an α-effect. Polym Chem 2019; 10:5790-5804. [PMID: 31749894 PMCID: PMC6865069 DOI: 10.1039/c9py01199d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the powerful nature of the aza-Michael reaction for generating C-N linkages and bioactive moieties, the bis-Michael addition of 1° amines remains ineffective for the synthesis of functional, step-growth polymers due to the drastic reduction in reactivity of the resulting 2° amine mono-addition adduct. In this study, a wide range of commercial hydrazides are shown to effectively undergo the bis-Michael reaction with divinyl sulfone (DVS) and 1,6-hexanediol diacrylate (HDA) under catalyst-free, thermal conditions to afford moderate to high molecular weight polymers with M n = 3.8-34.5 kg mol-1. The hydrazide-Michael reactions exhibit two distinctive, conversion-dependent kinetic regimes that are 2nd-order overall, in contrast to the 3rd-order nature of amines previously reported. The mono-addition rate constant was found to be 37-fold greater than that of the bis-addition at 80 °C for the reaction between benzhydrazide and DVS. A significant majority (12 of 15) of the hydrazide derivatives used here show excellent bis-Michael reactivity and achieve >97% conversions after 5 days. This behavior is consistent with calculations that show minimal variance of electron density on the N-nucleophile among the derivatives studied. Reactivity differences between hydrazides and hexylamine are also explored. Overall, the difference in reactivity between hydrazides and amines is attributed to the adjacent nitrogen atom in hydrazides that acts as an efficient hydrogen-bond donor that facilitates intramolecular proton-transfer following the formation of the zwitterion intermediate. This effect not only activates the Michael acceptor but also coordinates with additional Michael acceptors to form an intermolecular reactant complex.
Collapse
Affiliation(s)
- Dillon Love
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kangmin Kim
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Olivia Williams
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Jeffrey Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
- School of Dental Medicine, Craniofacial Biology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Charles Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Christopher Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
14
|
Noordzij GJ, Wilsens CHRM. Cascade aza-Michael Addition-Cyclizations; Toward Renewable and Multifunctional Carboxylic Acids for Melt-Polycondensation. Front Chem 2019; 7:729. [PMID: 31799231 PMCID: PMC6868100 DOI: 10.3389/fchem.2019.00729] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 11/13/2022] Open
Abstract
Although the aza-Michael addition reaction on various unsaturated (di-)carboxylic acids and esters of, for example, itaconic acid, is well-known, the consecutive cyclization reaction has not received much attention in literature. The products of this aza-Michael cascade reaction, being mono- or di-carboxylic acid or ester functionalized N-alkyl-pyrrolidone structures, prove interesting for melt-polycondensation reactions as they exhibit excellent stability at elevated temperatures. In other words, this reaction is a toolbox for the generation of renewable monomers and, in turn, polymers with tunable physiological properties. Therefore, this work provides an overview of the state-of-the-art of the cascade aza-Michael addition-cyclization reactions on biobased unsaturated acids and esters, and their use in polymerization reactions. Furthermore, we extend this overview with the cascade aza-Michael addition-cyclization reaction of trans-trimethyl aconitate with di-amines to form a tetra-functional N-alkyl-bis-(pyrrolidone dimethylcarboxylate), which exhibits excellent thermal stability and could effectively be used as monomer in polycondensation reactions. Importantly, the aza-Michael addition reaction between primary amines and trans-trimethyl aconitate can be considered a click-reaction; it proceeds quantitatively within minutes under ambient conditions and follows the principles of green chemistry.
Collapse
Affiliation(s)
- Geert J. Noordzij
- Chemelot InSciTe, Geleen, Netherlands
- Faculty of Science and Engineering, Aachen-Maastricht Institute of Biobased Materials (AMIBM), Maastricht University, Geleen, Netherlands
| | - Carolus H. R. M. Wilsens
- Faculty of Science and Engineering, Aachen-Maastricht Institute of Biobased Materials (AMIBM), Maastricht University, Geleen, Netherlands
| |
Collapse
|
15
|
Scheutz GM, Lessard JJ, Sims MB, Sumerlin BS. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J Am Chem Soc 2019; 141:16181-16196. [PMID: 31525287 DOI: 10.1021/jacs.9b07922] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical division of polymeric materials into thermoplastics and thermosets based on covalent network structure often implies that these categories are distinct and irreconcilable. Yet, the past two decades have seen extensive development of materials that bridge this gap through incorporation of dynamic crosslinks, enabling them to behave as both robust networks and moldable plastics. Although their potential utility is significant, the growth of covalent adaptable networks (CANs) has obscured the line between "thermoplastic" and "thermoset" and erected a conceptual barrier to the growing number of new researchers entering this discipline. This Perspective aims to both outline the fundamental theory of CANs and provide a critical assessment of their current status. We emphasize throughout that the unique properties of CANs emerge from the network chemistry, and particularly highlight the role that the crosslink exchange mechanism (i.e., dissociative exchange or associative exchange) plays in the resultant material properties under processing conditions. Predominant focus will be on thermally induced dynamic behavior, as the majority of presently employed exchange chemistries rely on thermal stimulus, and it is simple to apply to bulk materials. Lastly, this Perspective aims to identify current issues and address possible solutions for better fundamental understanding within this field.
Collapse
Affiliation(s)
- Georg M Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Jacob J Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Michael B Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
16
|
Debnath S, Ujjwal RR, Ojha U. Self-Healable and Recyclable Dynamic Covalent Networks Based on Room Temperature Exchangeable Hydrazide Michael Adduct Linkages. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01827] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Suman Debnath
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology Jais, Bahadurpur, Mukhetia More, Harbanshganj, Amethi, Uttar Pradesh 229304, India
| | - Rewati Raman Ujjwal
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology Jais, Bahadurpur, Mukhetia More, Harbanshganj, Amethi, Uttar Pradesh 229304, India
| | - Umaprasana Ojha
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology Jais, Bahadurpur, Mukhetia More, Harbanshganj, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
17
|
Sautaux J, Montero de Espinosa L, Balog S, Weder C. Multistimuli, Multiresponsive Fully Supramolecular Orthogonally Bound Polymer Networks. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00555] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Julien Sautaux
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Lucas Montero de Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
18
|
Li L, Chen X, Jin K, Torkelson JM. Vitrimers Designed Both To Strongly Suppress Creep and To Recover Original Cross-Link Density after Reprocessing: Quantitative Theory and Experiments. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00922] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Lu XB, Liu Y, Zhou H. Learning Nature: Recyclable Monomers and Polymers. Chemistry 2018; 24:11255-11266. [DOI: 10.1002/chem.201704461] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P. R. China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P. R. China
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P. R. China
| |
Collapse
|
20
|
Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: Reaction mechanism and kinetics. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Lerond M, Bélanger D, Skene WG. Surface immobilized azomethine for multiple component exchange. SOFT MATTER 2017; 13:6639-6646. [PMID: 28926070 DOI: 10.1039/c7sm01456b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diazonium chemistry concomitant with in situ electrochemical reduction was used to graft an aryl aldehyde to indium-tin oxide (ITO) coated glass substrates. This served as an anchor for preparing electroactive azomethines that were covalently bonded to the transparent electrode. The immobilized azomethines could undergo multiple step-wise component exchanges with different arylamines. The write-erase-write sequences were electrochemically confirmed. The azomethines could also be reversibly hydrolyzed. This was exploited for multiple azomethine-hydrolysis cycles resulting in discrete electroactive immobilized azomethines. The erase-rewrite sequences were also electrochemically confirmed.
Collapse
Affiliation(s)
- Michael Lerond
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | | | | |
Collapse
|
22
|
Wang M, Li Z, Li H, He J, Li N, Xu Q, Lu J. Different Steric-Twist-Induced Ternary Memory Characteristics in Nonconjugated Copolymers with Pendant Naphthalene and 1,8-Naphthalimide Moieties. Chem Asian J 2017; 12:2744-2748. [DOI: 10.1002/asia.201701044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Zhuang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
23
|
Sasaki S, Sugita Y, Tokita M, Suenobu T, Ishitani O, Konishi GI. Smart Network Polymers with Bis(piperidyl)naphthalene Cross-Linkers: Selective Fluorescence Quenching and Photodegradation in the Presence of Trichloromethyl-Containing Chloroalkanes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | - Tomoyoshi Suenobu
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
24
|
Fortman DJ, Brutman JP, Hillmyer MA, Dichtel WR. Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. J Appl Polym Sci 2017. [DOI: 10.1002/app.44984] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- David J. Fortman
- Department of ChemistryNorthwestern University2145 Sheridan RdEvanston Illinois60208
- Department of Chemistry and Chemical BiologyCornell University, Baker LaboratoryIthaca New York14853
| | - Jacob P. Brutman
- Department of ChemistryUniversity of Minnesota207 Pleasant St. SEMinneapolis Minnesota55455
| | - Marc A. Hillmyer
- Department of ChemistryUniversity of Minnesota207 Pleasant St. SEMinneapolis Minnesota55455
| | - William R. Dichtel
- Department of ChemistryNorthwestern University2145 Sheridan RdEvanston Illinois60208
- Department of Chemistry and Chemical BiologyCornell University, Baker LaboratoryIthaca New York14853
| |
Collapse
|