1
|
Swain A, Das Anthuparambil N, Begam N, Chandran S, Basu JK. Harnessing interfacial entropic effects in polymer grafted nanoparticle composites for tailoring their thermo-mechanical and separation properties. SOFT MATTER 2025. [PMID: 40266282 DOI: 10.1039/d4sm01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Nanocomposites based on polymeric materials have been extensively studied to understand and control the thermodynamics, flow, and mechanical properties of the underlying matrix as well to create new materials with diverse optical, electrical, magnetic, separation, catalytic, and biomedical properties. In the form of thin films or membranes, such materials can impart remarkable improvements in various properties of the underlying substrates. Using nanoparticles with grafted polymer chains usually overcomes a major hurdle in achieving enhancements in various properties by enabling better dispersion in the matrix while at the same time introducing a new parameter - interfacial entropy - leading to the emergence of new parameter space for tuning dispersion, flow and thermal properties. In this article, we highlight how this interfacial entropic effect can be harnessed to control various properties in thin films and membranes of grafted nanoparticle composites, in particular their thermo-mechanical properties, viscosity, fragility, glass transition temperature (Tg), and dynamic heterogeneity as well as their ability to act as highly selective gas separation and water desalination membranes. We discuss the application of a range of experimental techniques as well as molecular dynamics simulation to extract these properties and obtain microscopic insight into how the interplay of various surface and interfacial effects lies at the centre of these significant property improvements and enhanced functionality. Finally, we provide an outlook on future opportunities for designing sustainable PNCs, emphasizing their potential in environmental, energy, and biomedical applications, with advanced experiments and modelling driving further innovations.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Nimmi Das Anthuparambil
- Department of Physics, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nafisa Begam
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sivasurender Chandran
- Soft and Biological Matter Laboratory, Department of Physics, Indian Institute of Technology, Kanpur-208016, India.
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
2
|
Kruteva M, Monkenbusch M, Sharma A, Allgaier J, Hoffmann I, Rosi B, Dulle M, Porcar L, Matsarskaia O, Richter D. Unravelling chain confinement and dynamics of weakly entangled polymers in one component nanocomposites. SOFT MATTER 2025. [PMID: 40079252 DOI: 10.1039/d4sm01505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Structure and dynamics of polymer chains grafted to a nanoparticle (NP) surface in one component nanocomposites (OCNC) are investigated by small angle scattering (SAXS, SANS) and neutron spin echo (NSE). The OCNC were realized by self-assembly of block-copolymers and subsequent cross-linking of the core. The sizes of the resulting NPs were narrowly distributed. Owing to equal core and shell volumes the melt structure is that of a concentrated colloidal dispersion of cores. The melt structure could be reasonably well described by a Percus-Yevick structure factor. In order to access more deeply the dynamics, three differently labeled materials with labels at the inner- or outer part and the whole graft were studied. The experimental data were evaluated in terms of models allowing for site dependent friction. For this purpose, the Langevin equation containing a friction profile was solved and the dynamic structure factor in terms of its eigenvalues and eigenvectors was compared to the data. The evaluation shows increased friction towards the grafting points. In addition, topological restrictions of motion due to the dense arrangements of micellar cores and the presence of neighboring chains were considered and compared with those of a corresponding melt. Assuming homogenous relaxation of all grafts did not yield a satisfactory data description, but rather at least two differently relaxing chain ensembles had to be considered.
Collapse
Affiliation(s)
- M Kruteva
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - M Monkenbusch
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - A Sharma
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
- CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - J Allgaier
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - I Hoffmann
- Institut Laue-Langevin (ILL), 38000 Grenoble, France
| | - B Rosi
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
- European Spallation Source (ESS), Partikelgatan 2, 224 84 Lund, Sweden
| | - M Dulle
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - L Porcar
- Institut Laue-Langevin (ILL), 38000 Grenoble, France
| | - O Matsarskaia
- Institut Laue-Langevin (ILL), 38000 Grenoble, France
| | - D Richter
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
3
|
Kim K, Grummon BC, Thrasher CJ, Macfarlane RJ. Regio-Selective Mechanical Enhancement of Polymer-Grafted Nanoparticle Composites via Light-Mediated Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410493. [PMID: 39871745 PMCID: PMC11899498 DOI: 10.1002/adma.202410493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/30/2024] [Indexed: 01/29/2025]
Abstract
Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses. Here, a method of synthesizing composites using UV-crosslinkable brush-coated nanoparticles (referred to as UV-XNPs) is introduced that can be applied to various monomer compositions by incorporating photoinitiators into the polymer brushes. UV crosslinking of processed UV-XNP structures can increase their tensile modulus up to 15-fold without any noticeable alteration to their appearance or shape. By using photomasks to alter UV intensity across a sample, intentionally designed inhomogeneities in crosslink density result in predetermined anisotropic shape changes under strain. This unique capability of UV-XNP materials is applied to stiffness-patterned flexible electronic substrates that prevent the delamination of rigid components under deformation. The potential of UV-XNPs as functional, soft device components is further demonstrated by wearable devices that can be modified post-fabrication to customize their performance, permitting the ability to add functionality to existing device architectures.
Collapse
Affiliation(s)
- Kyungtae Kim
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Benjamin C. Grummon
- Department of ChemistryMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Carl J. Thrasher
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Robert J. Macfarlane
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| |
Collapse
|
4
|
Pal S, Keten S. Micro-ballistic response of thin film polymer grafted nanoparticle monolayers. SOFT MATTER 2024; 20:7926-7935. [PMID: 39331362 DOI: 10.1039/d4sm00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Self-assembled polymer grafted nanoparticles (PGNs) are of great interest for their potential to enhance mechanical properties compared to neat polymers and nanocomposites. Apart from volume fraction of nanoparticles, recent experiments have suggested that nanoscale phenomena such as nanoconfinement of grafted chains, altered dynamics and relaxation behavior at the segmental and colloidal scales, and cohesive energy between neighboring coronas are important factors that influence mechanical and rheological properties. How these factors influence the mechanics of thin films subject to micro-ballistic impact remains to be fully understood. Here we examine the micro-ballistic impact resistance of PGN thin films with polymethyl methacrylate (PMMA) grafts using coarse-grained molecular dynamics simulations. The grafted chain length and nanoparticle core densities are systematically varied to understand the influences of interparticle spacing, cohesion, and momentum transfer effects under high-velocity impact. Our findings show that the inter-PGN cohesive energy density (γPGN) is an important parameter for energy absorption. Cohesion energy density is low for short grafts but quickly saturates around entanglement length as adjacent coronas interpenetrate fully. The response of γPGN positively influences specific penetration energy, , which peaks before chain entanglement starts (
Collapse
Affiliation(s)
- Subhadeep Pal
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Sinan Keten
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Pallaka MR, Simon SL. The glass transition and enthalpy recovery of polystyrene nanorods using Flash differential scanning calorimetry. J Chem Phys 2024; 160:124904. [PMID: 38533885 DOI: 10.1063/5.0190076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 03/28/2024] Open
Abstract
The glass transition (Tg) behavior and enthalpy recovery of polystyrene nanorods within an anodic aluminum oxide (AAO) template (supported nanorods) and after removal from AAO (unsupported nanorods) is studied using Flash differential scanning calorimetry. Tg is found to be depressed relative to the bulk by 20 ± 2 K for 20 nm-diameter unsupported polystyrene (PS) nanorods at the slowest cooling rate and by 9 ± 1 K for 55 nm-diameter rods. On the other hand, bulk-like behavior is observed in the case of unsupported 350 nm-diameter nanorods and for all supported rods in AAO. The size-dependent Tg behavior of the PS unsupported nanorods compares well with results for ultrathin films when scaled using the volume/surface ratio. Enthalpy recovery was also studied for the 20 and 350 nm unsupported nanorods with evolution toward equilibrium found to be linear with logarithmic time. The rate of enthalpy recovery for the 350 nm rods was similar to that for the bulk, whereas the rate of recovery was enhanced for the 20 nm rods for down-jump sizes larger than 17 K. A relaxation map summarizes the behavior of the nanorods relative to the bulk and relative to that for the 20 nm-thick ultrathin film. Interestingly, the fragility of the 20 nm-diameter nanorod and the 20 nm ultrathin film are identical within the error of measurements, and when plotted vs departure from Tg (i.e., T - Tg), the relaxation maps of the two samples are identical in spite of the fact that the Tg is depressed 8 K more in the nanorod sample.
Collapse
Affiliation(s)
- Madhusudhan R Pallaka
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sindee L Simon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
6
|
Serna S, Wang T, Torkelson JM. Eliminating the Tg-confinement and fragility-confinement effects in poly(4-methylstyrene) films by incorporation of 3 mol % 2-ethylheyxl acrylate comonomer. J Chem Phys 2024; 160:034903. [PMID: 38235797 DOI: 10.1063/5.0189409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Nanoconfined poly(4-methylstyrene) [P(4-MS)] films exhibit reductions in glass transition temperature (Tg) relative to bulk Tg (Tg,bulk). Ellipsometry reveals that 15-nm-thick P(4-MS) films supported on silicon exhibit Tg - Tg,bulk = - 15 °C. P(4-MS) films also exhibit fragility-confinement effects; fragility decreases ∼60% in going from bulk to a 20-nm-thick film. Previous research found that incorporating 2-6 mol % 2-ethylhexyl acrylate (EHA) comonomer in styrene-based random copolymers eliminates Tg- and fragility-confinement effects in polystyrene. Here, we demonstrate that incorporating 3 mol % EHA in a 4-MS-based random copolymer, 97/3 P(4-MS/EHA), eliminates the Tg- and fragility-confinement effects. The invariance of fragility with nanoconfinement of 97/3 P(4-MS/EHA) films, hypothesized to originate from the interdigitation of ethylhexyl groups, indicates that the presence of EHA prevents the free surface from perturbing chain packing and the cooperative mobility associated with Tg. This method of eliminating confinement effects is advantageous as it relies on the simplest of polymerization methods and neat copolymer only slightly altered in composition from homopolymer. We also investigated whether we could eliminate the Tg-confinement effect with low levels of 2-ethylhexyl methacrylate (EHMA) in 4-MS-based or styrene-based copolymers. Although EHMA is structurally nearly identical to EHA, 4-MS-based and styrene-based copolymers incorporating 4 mol % EHMA exhibit Tg-confinement effects similar to P(4-MS) and polystyrene. These results support the special character of EHA in eliminating confinement effects originating at free surfaces.
Collapse
Affiliation(s)
- Sergio Serna
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - Tong Wang
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
7
|
Apata IE, Tawade BV, Cummings SP, Pradhan N, Karim A, Raghavan D. Comparative Study of Polymer-Grafted BaTiO 3 Nanoparticles Synthesized Using Normal ATRP as Well as ATRP and ARGET-ATRP with Sacrificial Initiator with a Focus on Controlling the Polymer Graft Density and Molecular Weight. Molecules 2023; 28:molecules28114444. [PMID: 37298920 DOI: 10.3390/molecules28114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Structurally well-defined polymer-grafted nanoparticle hybrids are highly sought after for a variety of applications, such as antifouling, mechanical reinforcement, separations, and sensing. Herein, we report the synthesis of poly(methyl methacrylate) grafted- and poly(styrene) grafted-BaTiO3 nanoparticles using activator regeneration via electron transfer (ARGET ATRP) with a sacrificial initiator, atom transfer radical polymerization (normal ATRP), and ATRP with sacrificial initiator, to understand the role of the polymerization procedure in influencing the structure of nanoparticle hybrids. Irrespective of the polymerization procedure adopted for the synthesis of nanoparticle hybrids, we noticed PS grafted on the nanoparticles showed moderation in molecular weight and graft density (ranging from 30,400 to 83,900 g/mol and 0.122 to 0.067 chain/nm2) compared to PMMA-grafted nanoparticles (ranging from 44,620 to 230,000 g/mol and 0.071 to 0.015 chain/nm2). Reducing the polymerization time during ATRP has a significant impact on the molecular weight of polymer brushes grafted on the nanoparticles. PMMA-grafted nanoparticles synthesized using ATRP had lower graft density and considerably higher molecular weight compared to PS-grafted nanoparticles. However, the addition of a sacrificial initiator during ATRP resulted in moderation of the molecular weight and graft density of PMMA-grafted nanoparticles. The use of a sacrificial initiator along with ARGET offered the best control in achieving lower molecular weight and narrow dispersity for both PS (37,870 g/mol and PDI of 1.259) and PMMA (44,620 g/mol and PDI of 1.263) nanoparticle hybrid systems.
Collapse
Affiliation(s)
- Ikeoluwa E Apata
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | | | - Steven P Cummings
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Nihar Pradhan
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | | |
Collapse
|
8
|
Rationalizing the interfacial layer in polymer nanocomposites: Correlation between enthalpy and dielectric relaxation. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Merrill JH, Li R, Roth CB. End-Tethered Chains Increase the Local Glass Transition Temperature of Matrix Chains by 45 K Next to Solid Substrates Independent of Chain Length. ACS Macro Lett 2023; 12:1-7. [PMID: 36516977 DOI: 10.1021/acsmacrolett.2c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The local glass transition temperature Tg of pyrene-labeled polystyrene (PS) chains intermixed with end-tethered PS chains grafted to a neutral silica substrate was measured by fluorescence spectroscopy. To isolate the impact of the grafted chains, the films were capped with bulk neat PS layers eliminating competing effects of the free surface. Results demonstrate that end-grafted chains strongly increase the local Tg of matrix chains by ≈45 K relative to bulk Tg, independent of grafted chain molecular weight from Mn = 8.6 to 212 kg/mol and chemical end-group, over a wide range of grafting densities σ = 0.003 to 0.33 chains/nm2 spanning the mushroom-to-brush transition regime. The tens-of-degree increase in local Tg resulting from immobilization of the chain ends by covalent bonding in this athermal system suggests a mechanism that substantially increases the local activation energy required for cooperative rearrangements.
Collapse
Affiliation(s)
- James H Merrill
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Ruoyu Li
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
10
|
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers (Basel) 2022; 14:polym14194245. [PMID: 36236192 PMCID: PMC9571834 DOI: 10.3390/polym14194245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed.
Collapse
|
11
|
Sakib N, Koh YP, Simon SL. The absolute heat capacity of polymer grafted nanoparticles using fast scanning calorimetry*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yung P. Koh
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
12
|
Park G, Lee H, Hyun Sim J, Kim A, Kim M, Paeng K. Polymer Segmental Dynamics Near the Interface of Silica Particles in the Particle/Polymer Composites. J Colloid Interface Sci 2022; 629:256-264. [DOI: 10.1016/j.jcis.2022.08.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
|
13
|
Lettow JH, Yang H, Nealey PF, Rowan SJ. Effect of Graft Molecular Weight and Density on the Mechanical Properties of Polystyrene-Grafted Cellulose Nanocrystal Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James H. Lettow
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Han Yang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
14
|
Molecular dynamics modeling and simulation of silicon dioxide-low salinity water nanofluid for enhanced oil recovery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zuo B, Li C, Xu Q, Randazzo K, Jiang N, Wang X, Priestley RD. Ultrastable Glassy Polymer Films with an Ultradense Brush Morphology. ACS NANO 2021; 15:9568-9576. [PMID: 34032418 DOI: 10.1021/acsnano.0c09631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glassy polymer films with extreme stability could enable major advancements in a range of fields that require the use of polymers in confined environments. Yet, from a materials design perspective, we now know that the glass transition temperature (Tg) and thermal expansion of polymer thin films can be dramatically different from those characteristics of the bulk, i.e., exhibiting confinement-induced diminished thermal stability. Here, we demonstrate that polymer brushes with an ultrahigh grafting density, i.e., an ultradense brush morphology, exhibit a significant enhancement in thermal stability, as manifested by an exceptionally high Tg and low expansivity. For instance, a 5 nm thick polystyrene brush film exhibits an ∼75 K increase in Tg and ∼90% reduction in expansivity compared to a spin-cast film of similar thickness. Our results establish how morphology can overcome confinement and interfacial effects in controlling thin-film material properties and how this can be achieved by the dense packing and molecular ordering in the amorphous state of ultradense brushes prepared by surface-initiated atom transfer radical polymerization in combination with a self-assembled monolayer of initiators.
Collapse
Affiliation(s)
| | | | - Quanyin Xu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Lakkas AT, Sgouros AP, Revelas CJ, Theodorou DN. Structure and thermodynamics of grafted silica/polystyrene dilute nanocomposites investigated through self-consistent field theory. SOFT MATTER 2021; 17:4077-4097. [PMID: 33729266 DOI: 10.1039/d1sm00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer/matrix nanocomposites (PNCs) are materials with exceptional properties. They offer a plethora of promising applications in key industrial sectors. In most cases, it is preferable to disperse the nanoparticles (NPs) homogeneously across the matrix phase. However, under certain conditions NPs might lump together and lead to a composite material with undesirable properties. A common strategy to stabilize the NPs is to graft on their surface polymer chains of the same chemical constitution as the matrix chains. There are several unresolved issues concerning the optimal molar mass and areal density of grafted chains that would ensure best dispersion, given the nanoparticles and the polymer matrix. We propose a model for the prediction of key structural and thermodynamic properties of PNC and apply it to a single spherical silica (SiO2) nanoparticle or planar surface grafted with polystyrene chains embedded at low concentration in a matrix phase of the same chemical constitution. Our model is based on self-consistent field theory, formulated in terms of the Edwards diffusion equation. The properties of the PNC are explored across a broad parameter space, spanning the mushroom regime (low grafting densities, small NPs and chain lengths), the dense brush regime, and the crowding regime (large grafting densities, NP diameters, and chain lengths). We extract several key quantities regarding the distributions and the configurations of the polymer chains, such as the radial density profiles and their decomposition into contributions of adsorbed and free chains, the chains/area profiles, and the tendency of end segments to segregate at the interfaces. Based on our predictions concerning the brush thickness, we revisit the scaling behaviors proposed in the literature and we compare our findings with experiment, relevant simulations, and analytic models, such as Alexander's model for incompressible brushes.
Collapse
Affiliation(s)
- Apostolos T Lakkas
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece.
| | - Aristotelis P Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece.
| | - Constantinos J Revelas
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece.
| |
Collapse
|
17
|
Gun'ko VM. Polymer Adsorbents vs. Functionalized Oxides and Carbons: Particulate Morphology and Textural and SurfaceCharacteristics. Polymers (Basel) 2021; 13:1249. [PMID: 33921494 PMCID: PMC8069040 DOI: 10.3390/polym13081249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/15/2023] Open
Abstract
Various methods for morphological, textural, and structural characterization of polymeric, carbon, and oxide adsorbents have been developed and well described. However, there are ways to improve the quantitative information extraction from experimental data for describing complex sorbents and polymer fillers. This could be based not only on probe adsorption and electron microscopies (TEM, SEM) but also on small-angle X-ray scattering (SAXS), cryoporometry, relaxometry, thermoporometry, quasi-elastic light scattering, Raman and infrared spectroscopies, and other methods. To effectively extract information on complex materials, it is important to use appropriate methods to treat the data with adequate physicomathematical models that accurately describe the dependences of these data on pressure, concentration, temperature, and other parameters, and effective computational programs. It is shown that maximum accurate characterization of complex materials is possible if several complemented methods are used in parallel, e.g., adsorption and SAXS with self-consistent regularization procedures (giving pore size (PSD), pore wall thickness (PWTD) or chord length (CLD), and particle size (PaSD) distribution functions, the specific surface area of open and closed pores, etc.), TEM/SEM images with quantitative treatments (giving the PaSD, PSD, and PWTD functions), as well as cryo- and thermoporometry, relaxometry, X-ray diffraction, infrared and Raman spectroscopies (giving information on the behavior of the materials under different conditions).
Collapse
Affiliation(s)
- Volodymyr M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine
| |
Collapse
|
18
|
Sgouros AP, Revelas CJ, Lakkas AT, Theodorou DN. Potential of Mean Force between Bare or Grafted Silica/Polystyrene Surfaces from Self-Consistent Field Theory. Polymers (Basel) 2021; 13:1197. [PMID: 33917245 PMCID: PMC8068000 DOI: 10.3390/polym13081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
We investigate single and opposing silica plates, either bare of grafted, in contact with vacuum or melt phases, using self-consistent field theory. Solid-polymer and solid-solid nonbonded interactions are described by means of a Hamaker potential, in conjunction with a ramp potential. The cohesive nonbonded interactions are described by the Sanchez-Lacombe or the Helfand free energy densities. We first build our thermodynamic reference by examining single surfaces, either bare or grafted, under various wetting conditions in terms of the corresponding contact angles, the macroscopic wetting functions (i.e., the work of cohesion, adhesion, spreading and immersion), the interfacial free energies and brush thickness. Subsequently, we derive the potential of mean force (PMF) of two approaching bare plates with melt between them, each time varying the wetting conditions. We then determine the PMF between two grafted silica plates separated by a molten polystyrene film. Allowing the grafting density and the molecular weight of grafted chains to vary between the two plates, we test how asymmetries existing in a real system could affect steric stabilization induced by the grafted chains. Additionally, we derive the PMF between two grafted surfaces in vacuum and determine how the equilibrium distance between the two grafted plates is influenced by their grafting density and the molecular weight of grafted chains. Finally, we provide design rules for the steric stabilization of opposing grafted surfaces (or fine nanoparticles) by taking account of the grafting density, the chain length of the grafted and matrix chains, and the asymmetry among the opposing surfaces.
Collapse
Affiliation(s)
- Aristotelis P. Sgouros
- Correspondence: (A.P.S.); (D.N.T.); Tel.: +30-210-772-3216 (A.P.S.); +30-210-772-3157 (D.N.T.)
| | | | | | - Doros N. Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece; (C.J.R.); (A.T.L.)
| |
Collapse
|
19
|
Hansoge NK, Gupta A, White H, Giuntoli A, Keten S. Universal Relation for Effective Interaction between Polymer-Grafted Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitin K. Hansoge
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
| | - Agam Gupta
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Heather White
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Andrea Giuntoli
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
20
|
Li L, Qiang Z, Chen X, Jin K, Wang M, Torkelson JM. Impact of bottlebrush chain architecture on
T
g
‐confinement and
fragility‐confinement
effects enabled by thermo‐cleavable bottlebrush polymers synthesized by radical coupling and atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lingqiao Li
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Zhe Qiang
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Xi Chen
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Kailong Jin
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Muzhou Wang
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| |
Collapse
|
21
|
Wei T, Torkelson JM. Molecular Weight Dependence of the Glass Transition Temperature ( Tg)-Confinement Effect in Well-Dispersed Poly(2-vinyl pyridine)–Silica Nanocomposites: Comparison of Interfacial Layer Tg and Matrix Tg. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tong Wei
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Kim YG, Wichaita W, Thérien-Aubin H. Influence of the Architecture of Soft Polymer-Functionalized Polymer Nanoparticles on Their Dynamics in Suspension. Polymers (Basel) 2020; 12:E1844. [PMID: 32824574 PMCID: PMC7465671 DOI: 10.3390/polym12081844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
The behavior of nanogels in suspension can be dramatically affected by the grafting of a canopy of end-tethered polymer chains. The architecture of the interfacial layer, defined by the grafting density and length of the polymer chains, is a crucial parameter in defining the conformation and influencing the dynamics of the grafted chains. However, the influence of this architecture when the core substrate is itself soft and mobile is complex; the dynamics of the core influences the dynamics of the tethered chains, and, conversely, the dynamics of the tethered chains can influence the dynamics of the core. Here, poly(styrene) (PS) particles were functionalized with poly(methyl acrylate) (PMA) chains and swollen in a common solvent. NMR relaxation reveals that the confinement influences the mobility of the grafted chain more prominently for densely grafted short chains. The correlation time associated with the relaxation of the PMA increased by more than 20% when the grafting density increased for short chains, but for less than 10% for long chains. This phenomenon is likely due to the steric hindrance created by the close proximity to the rigid core and of the neighboring chains. More interestingly, a thick layer of a densely grafted PMA canopy efficiently increases the local mobility of the PS cores, with a reduction of the correlation time of more than 30%. These results suggest an interplay between the dynamics of the core and the dynamics of the canopy.
Collapse
Affiliation(s)
| | | | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55131 Mainz, Germany; (Y.-G.K.); (W.W.)
| |
Collapse
|
23
|
Mapesa EU, Street DP, Heres MF, Kilbey SM, Sangoro J. Wetting and Chain Packing across Interfacial Zones Affect Distribution of Relaxations in Polymer and Polymer-Grafted Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Emmanuel U. Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dayton P. Street
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maximilian F. Heres
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - S. Michael Kilbey
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Su YX, Xu L, Xu XH, Hou XH, Liu N, Wu ZQ. Controlled Synthesis of Densely Grafted Bottlebrushes That Bear Helical Polyisocyanide Side Chains on Polyisocyanide Backbones and Exhibit Greatly Increased Viscosity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yi-Xu Su
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| |
Collapse
|
26
|
Sakib N, Koh YP, Huang Y, Mongcopa KIS, Le AN, Benicewicz BC, Krishnamoorti R, Simon SL. Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yung P. Koh
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29201, United States
| | - Katrina Irene S. Mongcopa
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amy N. Le
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29201, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
27
|
Lee J, Wang Z, Zhang J, Yan J, Deng T, Zhao Y, Matyjaszewski K, Bockstaller MR. Molecular Parameters Governing the Elastic Properties of Brush Particle Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01809] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jaejun Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianan Zhang
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tingwei Deng
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
28
|
Wang Z, Liu T, Zhao Y, Lee J, Wei Q, Yan J, Li S, Olszewski M, Yin R, Zhai Y, Bockstaller MR, Matyjaszewski K. Synthesis of Gradient Copolymer Grafted Particle Brushes by ATRP. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jaejun Lee
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Qiangbing Wei
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sipei Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Zhai
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
29
|
Wang Z, Fantin M, Sobieski J, Wang Z, Yan J, Lee J, Liu T, Li S, Olszewski M, Bockstaller MR, Matyjaszewski K. Pushing the Limit: Synthesis of SiO2-g-PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO2–Br Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Zhenhua Wang
- Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hansoge NK, Keten S. Effect of Polymer Chemistry on Chain Conformations in Hairy Nanoparticle Assemblies. ACS Macro Lett 2019; 8:1209-1215. [PMID: 35651164 DOI: 10.1021/acsmacrolett.9b00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-free, polymer-grafted nanoparticles, called hairy nanoparticle assemblies (aHNPs), have proven advantageous over traditional nanocomposites, as good dispersion and structural order can be achieved. Recent studies have shown that conformational changes in the polymer structure can lead to significant enhancements in the mechanical properties of aHNPs. To quantify how polymer chemistry affects the chain conformations in aHNPs, here we present a comparative analysis based on coarse-grained molecular dynamics simulations. Specifically, we compare the chain conformations in an anisotropic cellulose nanoparticle grafted to four common polymers with distinct chemical groups, fragility, and segmental structures, that is, poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and polybutadiene (PB). We observe that semiflexible glassy polymers such as PMMA and PS have a higher critical chain length (Ncr), the transition point where the polymer conformation changes from concentrated to semidilute brush regime. Flexible rubbery polymers (PB) can overcome the Ncr barrier at relatively lower molecular weights. We have used theoretical scaling laws based on Daoud-Cotton theory to uncover a direct correlation between empirical constants and physical parameters, such as persistence length and monomer excluded volume. Furthermore, we carried out a systematic study to understand the role of backbone rigidity and side-group size of polymer, and it revealed that the backbone rigidity significantly affects Ncr but the side-group size doesn't seem to have an appreciable effect on Ncr. We find that normalization of the monomer radial distribution curves using Ncr and other key molecular parameters collapses the curves for 110 distinct model aHNP systems studied. Our work paves the way for systematic quantification of these molecular design parameters to accelerate the design of polymer-grafted nanoparticle assemblies in combination with universal scaling relationships.
Collapse
Affiliation(s)
- Nitin K. Hansoge
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
31
|
Isolating the effect of polymer-grafted nanoparticle interactions with matrix polymer from dispersion on composite property enhancement: The example of polypropylene/halloysite nanocomposites. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
|
33
|
Midya J, Cang Y, Egorov SA, Matyjaszewski K, Bockstaller MR, Nikoubashman A, Fytas G. Disentangling the Role of Chain Conformation on the Mechanics of Polymer Tethered Particle Materials. NANO LETTERS 2019; 19:2715-2722. [PMID: 30913883 PMCID: PMC6463242 DOI: 10.1021/acs.nanolett.9b00817] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Indexed: 05/22/2023]
Abstract
The linear elastic properties of isotropic materials of polymer tethered nanoparticles (NPs) are evaluated using noncontact Brillouin light spectroscopy. While the mechanical properties of dense brush materials follow predicted trends with NP composition, a surprising increase in elastic moduli is observed in the case of sparsely grafted particle systems at approximately equal NP filling ratio. Complementary molecular dynamics simulations reveal that the stiffening is caused by the coil-like conformations of the grafted chains, which lead to stronger polymer-polymer interactions compared to densely grafted NPs with short chains. Our results point to novel opportunities to enhance the physical properties of composite materials by the strategic design of the "molecular architecture" of constituents to benefit from synergistic effects relating to the organization of the polymer component.
Collapse
Affiliation(s)
- Jiarul Midya
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Yu Cang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Sergei A. Egorov
- Department
of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904-4319, United States
| | - Krzysztof Matyjaszewski
- Chemistry
Department, Carnegie Mellon University, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arash Nikoubashman
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
34
|
Klonos PA, Goncharuk OV, Pakhlov EM, Sternik D, Deryło-Marczewska A, Kyritsis A, Gun’ko VM, Pissis P. Morphology, Molecular Dynamics, and Interfacial Phenomena in Systems Based on Silica Modified by Grafting Polydimethylsiloxane Chains and Physically Adsorbed Polydimethylsiloxane. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Olena V. Goncharuk
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Eugeniy M. Pakhlov
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Dariusz Sternik
- Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Volodymyr M. Gun’ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
35
|
Gruszkiewicz A, Słowikowska M, Grześ G, Wójcik A, Rokita J, Fiocco A, Wytrwal-Sarna M, Marzec M, Trzebicka B, Kopeć M, Wolski K, Zapotoczny S. Enhancement of the growth of polymer brushes via ATRP initiated from ions-releasing indium tin oxide substrates. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Abstract
Grafting polymers to nanoparticle surfaces influences properties from the conformation of the polymer chains to the dispersion and assembly of nanoparticles within a polymeric material. Recently, a small body of work has begun to address the question of how grafting polymers to a nanoparticle surface impacts chain dynamics, and the resulting physical properties of a material. This Review discusses recent work that characterizes the structure and dynamics of polymers that are grafted to nanoparticles and opportunities for future research. Starting from the case of a single polymer chain attached to a nanoparticle core, this Review follows the structure of the chains as grafting density increases, and how this structure slows relaxation of polymer chains and affects macroscopic material properties.
Collapse
Affiliation(s)
- Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, USA.
| |
Collapse
|
37
|
Chen X, Li L, Wei T, Venerus DC, Torkelson JM. Reprocessable Polyhydroxyurethane Network Composites: Effect of Filler Surface Functionality on Cross-link Density Recovery and Stress Relaxation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2398-2407. [PMID: 30585482 DOI: 10.1021/acsami.8b19100] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conventional polymer network composites cannot be recycled for high-value applications because of the presence of permanent covalent cross-links. We have developed reprocessable polyhydroxyurethane network nanocomposites using silica nanoparticles with different surface functionalities as reinforcing fillers. The property recovery after reprocessing is a function of the interaction between the filler surface and the network matrix during the network rearrangement process. When nonreactive silica nanoparticles lacking significant levels of surface functional groups are used at 4 wt % (2 vol %) loading, the resulting network composite exhibits substantial enhancement in mechanical properties relative to the neat network and based on values of rubbery plateau modulus is able to fully recover its cross-link density after a reprocessing step. When nanoparticles have surface functional groups that can participate in dynamic chemistries with the reprocessable network matrix, reprocessing leads to losses in mechanical properties associated with cross-link density at potential use temperatures, along with faster rates and lower apparent activation energies of stress relaxation at elevated temperature. This work reveals the importance of appropriate filler selection when polymer network composites are designed with dynamic covalent bonds to achieve both mechanical reinforcement and excellent reprocessability, which are needed for the development of recyclable polymer network composites for advanced applications.
Collapse
Affiliation(s)
| | | | | | - David C Venerus
- Department of Chemical and Biological Engineering , Illinois Institute of Technology , Chicago , Illinois 60616 , United States
| | | |
Collapse
|
38
|
Ethier JG, Hall LM. Structure and Entanglement Network of Model Polymer-Grafted Nanoparticle Monolayers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01373] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jeffrey G. Ethier
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
39
|
Begam N, Das A N, Chandran S, Ibrahim M, Padmanabhan V, Sprung M, Basu JK. Nanoparticle-polymer interfacial layer properties tune fragility and dynamic heterogeneity of athermal polymer nanocomposite films. SOFT MATTER 2018; 14:8853-8859. [PMID: 30357240 DOI: 10.1039/c8sm01729h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enthalpic interactions at the interface between nanoparticles and matrix polymers are known to influence various properties of the resultant polymer nanocomposites (PNC). For athermal PNCs, consisting of grafted nanoparticles embedded in chemically identical polymers, the role and extent of the interface layer (IL) interactions in determining the properties of the nanocomposites are not very clear. Here, we demonstrate the influence of the interfacial layer dynamics on the fragility and dynamical heterogeneity (DH) of athermal and glassy PNCs. The IL properties are altered by changing the grafted to matrix polymer size ratio, f, which in turn changes the extent of matrix chain penetration into the grafted layer, λ. The fragility of PNCs is found to increase monotonically with increasing entropic compatibility, characterised by increasing λ. Contrary to observations in most polymers and glass formers, we observe an anti-correlation between the dependence on IL dynamics of fragility and DH, quantified by the experimentally estimated Kohlrausch-Watts-Williams parameter and the non-Gaussian parameter obtained from simulations.
Collapse
Affiliation(s)
- Nafisa Begam
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ma F, Xu B, Song Y, Zheng Q. Influence of molecular weight on molecular dynamics and dynamic rheology of polypropylene glycol filled with silica. RSC Adv 2018; 8:31972-31978. [PMID: 35547494 PMCID: PMC9085909 DOI: 10.1039/c8ra04497j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022] Open
Abstract
Molecular weight strongly influences the molecular dynamics and rheological responses of nanocomposites, which is far from being well understood. Herein molecular dynamics and rheological behaviors of hydrophilic fumed silica filled unentangled polypropylene glycol (PPG) were investigated as a function of weight averaged molecular weight (M w) of PPG and volume fraction (∅) of silica. It is shown that M w does not affect the glassy layers surrounding the nanoparticles and the segmental dynamics of the mobile PPG phase. On the other hand, the mobile PPG phase in the highly filled nanocomposites exhibits an abnormal "more fragile" to "stronger" transition with increasing M w. The reinforcement and thinning behaviors are stronger in lower-M w nanocomposites with the "more fragile" mobile PPG phase. The results suggest that reinforcement of nanocomposites affects the dynamic fragility of the mobile phase of the matrix.
Collapse
Affiliation(s)
- Furui Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Bei Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
41
|
Liu P, Ma H, Han L, Yang L, Shen H, Li C, Li Y. The effect of amine-functionalized 1,1-diphenylethylene (DPE) derivatives on end-capping reactions and the simulation of their precision for sequence control. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Lee H, Sethuraman V, Kim Y, Lee W, Ryu DY, Ganesan V. Nonmonotonic Glass Transition Temperature of Polymer Films Supported on Polymer Brushes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hoyeon Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Vaidyanathan Sethuraman
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yeongsik Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Wooseop Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Venkat Ganesan
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Luo S, Chen Y, Sha Y, Xue G, Zhuravlev E, Schick C, Wang X, Zhou D, Li L. Molecular weight and interfacial effect on the kinetic stabilization of ultrathin polystyrene films. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Cang Y, Reuss AN, Lee J, Yan J, Zhang J, Alonso-Redondo E, Sainidou R, Rembert P, Matyjaszewski K, Bockstaller MR, Fytas G. Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films. Macromolecules 2017; 50:8658-8669. [PMID: 29755139 PMCID: PMC5940324 DOI: 10.1021/acs.macromol.7b01752] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/03/2017] [Indexed: 01/27/2023]
Abstract
Polymer-tethered colloidal particles (aka "particle brush materials") have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush-brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems.
Collapse
Affiliation(s)
- Yu Cang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anna N Reuss
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jaejun Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianan Zhang
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Elena Alonso-Redondo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rebecca Sainidou
- Normandie Univ, UNIHAVRE, Laboratoire Ondes et Milieux Complexes, UMR CNRS 6294, University of Le Havre, 75 Rue Bellot, 76600 Le Havre, France
| | - Pascal Rembert
- Normandie Univ, UNIHAVRE, Laboratoire Ondes et Milieux Complexes, UMR CNRS 6294, University of Le Havre, 75 Rue Bellot, 76600 Le Havre, France
| | - Krzysztof Matyjaszewski
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
45
|
Molecular dynamics simulation of the glass transition temperature of fullerene filled cis-1,4-polybutadiene nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2015-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Zhang M, Askar S, Torkelson JM, Brinson LC. Stiffness Gradients in Glassy Polymer Model Nanocomposites: Comparisons of Quantitative Characterization by Fluorescence Spectroscopy and Atomic Force Microscopy. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00917] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Min Zhang
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shadid Askar
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - L. Catherine Brinson
- Department
of Materials Science and Engineering, ‡Department of Chemical and Biological
Engineering, and §Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|