1
|
Lenßen P, Hengsbach R, Frommelius A, Cammeraat S, Linssen K, Simon U, Wöll D. Nanosized core-shell bio-hybrid microgels and their internal structure. NANOSCALE 2025; 17:4570-4577. [PMID: 39804202 DOI: 10.1039/d4nr04677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microgels are versatile materials with applications across biomedicine, materials science, and beyond. Their controllable size and composition enables tailoring specific properties, yet characterizing their internal structures on the nanoscale remains challenging. Super-resolution fluorescence microscopy (SRFM) effectively analyzes sub-μm structures, including microgels, offering a tool for investigating more complex systems such as core-shell microgels. Understanding their internal structure, in particular interpenetration at the soft-soft interface between core and shell and accessibility for guest molecules, is vital for rationally designing predictable functionalities. This study examines the core-shell morphology and the accessibility for guest molecules of bio-hybrid DNA-poly(N-isopropylmethacrylamide) microgels at three stages of shell polymerization using SRFM. Covalent fluorescence labeling probes the core polymer, co-polymerized with N,N'-bis(acryloyl)cystamine, which provides visual insight into core and shell compartmentalization. The results demonstrate core polymer interpenetration into the shell without compromising its original structure, and additionally allow us to determine the size- and hydrophobicity dependent accessibility of the microgel core. This, offering new perspectives on the internal architecture of core-shell microgels, contributes to the in-depth understanding of their complex behavior, potentially guiding the rational design of new microgel drug delivery systems, taking into account the complex interplay of polarity, size and charge of guest molecules.
Collapse
Affiliation(s)
- Pia Lenßen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Rebecca Hengsbach
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Anne Frommelius
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Samira Cammeraat
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Koen Linssen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Strauch C, Schneider S. Ionisation and swelling behaviour of weak polyampholyte core-shell networks - a Monte Carlo study. SOFT MATTER 2023; 19:938-950. [PMID: 36632835 DOI: 10.1039/d2sm01301k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The network charge of polyampholyte microgels can be tuned by varying the pH of the surrounding solution, and a charge reversal from a positively charged microgel at low pH to a negatively charged microgel at high pH can be achieved. In a titration experiment, it is difficult to tell apart the ionisation of the acidic and basic monomers in the network and to determine the distribution of charges in the network, whereas using Metropolis Monte Carlo simulations, both the degree of ionisation and the distribution of ionised monomers can be determined separately for both species. Building on our earlier work on alternating polyampholyte microgels, we now investigated the pH-dependent ionisation and the swelling behaviour of polyampholyte core-shell microgels under good solvent conditions. For this purpose, we performed Metropolis Monte Carlo simulations for a bead-spring model using the constant-pH method. As in our previous study on alternating microgels, the width of the U-shaped curve of the microgels volume as a function of pH depends on the relative dissociation constants of acid and base, and the microgel volume can be approximated by a linear function of the total network charge. Due to the spatial separation of acid and base in core-shell systems, the ionisation is less enhanced compared to a microgel with an alternating distribution of the two species. Nevertheless, we still see an influence of the presence of one species on the ionisation behaviour of the other species under good solvent conditions. Furthermore, the isoelectric point is shifted towards higher pH, which is caused by a higher charge density in the core compared to that in the shell. Added salt changes the Donnan equilibrium, which determines the counterion distribution within and outside of the microgel. At the same time, it contributes to the electrostatic screening of the network charges, leading to a narrowing of the U-shaped volume transition curve.
Collapse
Affiliation(s)
- Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
3
|
Hofzumahaus C, Strauch C, Schneider S. Monte Carlo simulations of weak polyampholyte microgels: pH-dependence of conformation and ionization. SOFT MATTER 2021; 17:6029-6043. [PMID: 34076026 DOI: 10.1039/d1sm00433f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We performed Metropolis Monte Carlo simulations to investigate the impact of varying acid and base dissociation constants on the pH-dependent ionization and conformation of weak polyampholyte microgels under salt-free conditions and under explicit consideration of the chemical ionization equilibria of the acidic and basic groups and their electrostatic interaction. Irrespective of their relative acid and base dissociation constant, all of the microgels undergo a pH-dependent charge reversal from positive to negative with a neutral charge at the isoelectric point. This charge reversal is accompanied by a U-shaped swelling transition of the microgels with a minimum of their size at the point of charge neutrality. The width of the U-shaped swelling transition, however, is found to depend on the chosen relative acid and base dissociation constants through which the extent of the favorable electrostatic intramolecular interaction of the ionized acidic and basic groups is altered. The pH-dependent swelling transition of the microgels is found to become broader, the stronger the intramolecular electrostatic interaction of the oppositely charged ionized species is. In addition, the intramolecular charge compensation of the acidic and basic groups of the microgels allows their counterions to abandon the microgel and the associated gain in translational entropy further amplifies the broadening of the pH-dependent swelling transition. The analysis of the radial ionization profiles of the acidic and basic groups of the differently composed microgels reveals a variety of radial ionization patterns with a dependence on the overall charge of the microgels.
Collapse
Affiliation(s)
- C Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - C Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - S Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
4
|
Pérez-Chávez NA, Albesa AG, Longo GS. Thermodynamic Theory of Multiresponsive Microgel Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Néstor A. Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Alberto G. Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| |
Collapse
|
5
|
|
6
|
Haag SL, Bernards MT. Enhanced Biocompatibility of Polyampholyte Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3292-3299. [PMID: 32160745 DOI: 10.1021/acs.langmuir.0c00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissue-engineered scaffolds encounter many challenges including poor integration with native tissue. Nonspecific protein adsorption can trigger the foreign body response leading to encapsulation and isolation from the native injured tissue. This concern is mitigated with nonfouling polymer scaffolds. This study investigates the long-term biocompatibility of a nonfouling polyampholyte system composed of positively charged [2-(acryloyloxy)ethyl]trimethylammonium chloride monomers and negatively charged 2-carboxyethyl acrylate monomers, cross-linked with triethylene glycol dimethacrylate. This system has previously shown resistance to nonspecific protein adsorption and short-term cell attachment via conjugated proteins. However, longer-term cell survival has not been evaluated with this system. First, the environmental pH was monitored with varying amounts of counter ions present in the hydrogel synthesis buffer. The lowest level (3 M NaOH) and the level that resulted in pH values closest to physiological conditions (6.7 M NaOH) were chosen for further investigation. These two formulations were then compared in terms of their contact angle, qualitative protein adsorption and conjugation capacity, and quantitative cell adhesion, proliferation, and viability. The 3 M NaOH formulation showed higher initial protein conjugation and cell adhesion compared to the 6.7 M NaOH formulation. However, the 3 M NaOH hydrogels had low cell viability after 24 h due to the acidic component release into the culture environment. The 6.7 M NaOH formulation showed a lower initial conjugation and cell adhesion but overcame this limitation by providing a stable environment that maintained cell viability for over 5 days. The 6.7 M NaOH polyampholyte hydrogel formulation shows increased biocompatibility, while maintaining resistance to nonspecific protein adsorption, as demonstrated by the targeted cell adhesion and proliferation. Therefore, this polyampholyte formulation demonstrates strong potential as a tissue-engineered scaffold.
Collapse
Affiliation(s)
- Stephanie L Haag
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, Idaho 83843, United States
| | - Matthew T Bernards
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, Idaho 83843, United States
| |
Collapse
|
7
|
Grinberg VY, Burova TV, Grinberg NV, Alvarez-Lorenzo C, Khokhlov AR. Protein-like energetics of conformational transitions in a polyampholyte hydrogel. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Tan KH, Xu W, Stefka S, Demco DE, Kharandiuk T, Ivasiv V, Nebesnyi R, Petrovskii VS, Potemkin II, Pich A. Selenium‐Modified Microgels as Bio‐Inspired Oxidation Catalysts. Angew Chem Int Ed Engl 2019; 58:9791-9796. [DOI: 10.1002/anie.201901161] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/17/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Kok H. Tan
- DWI Leibniz Institute for Interactive Materials e.V.RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Wenjing Xu
- DWI Leibniz Institute for Interactive Materials e.V.RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Simon Stefka
- DWI Leibniz Institute for Interactive Materials e.V.RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Dan E. Demco
- DWI Leibniz Institute for Interactive Materials e.V.RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Technical University of Cluj-NapocaDepartment of Physics and Chemistry Romania
| | - Tetiana Kharandiuk
- Technology of Organic Products DepartmentLviv Polytechnic National University Ukraine
| | - Volodymyr Ivasiv
- Technology of Organic Products DepartmentLviv Polytechnic National University Ukraine
| | - Roman Nebesnyi
- Technology of Organic Products DepartmentLviv Polytechnic National University Ukraine
| | | | - Igor I. Potemkin
- DWI Leibniz Institute for Interactive Materials e.V.RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Physics DepartmentLomonosov Moscow State University Russian Federation
- National Research South Ural State University Chelyabinsk Russian Federation
| | - Andrij Pich
- DWI Leibniz Institute for Interactive Materials e.V.RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM)Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| |
Collapse
|
9
|
Tan KH, Xu W, Stefka S, Demco DE, Kharandiuk T, Ivasiv V, Nebesnyi R, Petrovskii VS, Potemkin II, Pich A. Selenmodifizierte Mikrogele als bioinspirierte Oxidationskatalysatoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kok H. Tan
- DWI Leibniz Institute für Interaktive Materialien e.V.RWTH Aachen Forckenbeckstraße 50 52074 Aachen Deutschland
| | - Wenjing Xu
- DWI Leibniz Institute für Interaktive Materialien e.V.RWTH Aachen Forckenbeckstraße 50 52074 Aachen Deutschland
| | - Simon Stefka
- DWI Leibniz Institute für Interaktive Materialien e.V.RWTH Aachen Forckenbeckstraße 50 52074 Aachen Deutschland
| | - Dan E. Demco
- DWI Leibniz Institute für Interaktive Materialien e.V.RWTH Aachen Forckenbeckstraße 50 52074 Aachen Deutschland
- Technical University of Cluj-NapocaDepartment of Physics and Chemistry Rumänien
| | - Tetiana Kharandiuk
- Technology of Organic Products DepartmentLviv Polytechnic National University Ukraine
| | - Volodymyr Ivasiv
- Technology of Organic Products DepartmentLviv Polytechnic National University Ukraine
| | - Roman Nebesnyi
- Technology of Organic Products DepartmentLviv Polytechnic National University Ukraine
| | | | - Igor I. Potemkin
- DWI Leibniz Institute für Interaktive Materialien e.V.RWTH Aachen Forckenbeckstraße 50 52074 Aachen Deutschland
- Physics DepartmentLomonosov Moscow State University Russische Förderation
- National Research South Ural State University Chelyabinsk Russische Förderation
| | - Andrij Pich
- DWI Leibniz Institute für Interaktive Materialien e.V.RWTH Aachen Forckenbeckstraße 50 52074 Aachen Deutschland
- Aachen Maastricht Institute for Biobased Materials (AMIBM)Maastricht University Urmonderbaan 22 6167 RD Geleen Niederlande
| |
Collapse
|
10
|
Liu LY, Xia G, Feng ZJ, Hao QH, Tan HG. Self-assembly of polyelectrolyte diblock copolymers at monovalent and multivalent counterions. SOFT MATTER 2019; 15:3689-3699. [PMID: 30888010 DOI: 10.1039/c9sm00028c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the self-assembly behaviors of diblock copolymers consisting of one hydrophobic block and one ionizable polyelectrolyte (PE) block in the presence of monovalent and multivalent counterions are systematically discussed through molecular dynamics simulation. Copolymers are molded as bead-spring chains and the ions are explicitly considered. First, the self-assembled structures of symmetrical block copolymers at different charge fractions are analyzed in detail. Spherical hydrophobic cores are favored by all of the micelles. The effect of counterion valence is much more noticeable at high values of charge fraction. When the PE blocks are fully charged, the presence of multivalent counterions preferably provokes the formation of macroscopic structures. A precipitant spherical micelle is generated in the presence of divalent counterions. Special shapes of coronas are created in the presence of trivalent ions, and a remarkable one dimensional macroscopic cylindrical aggregation of micelles forms; the whole assembly is not typical core-shell micelles, but rather a cylinder with alternating spherical micelles arranged perpendicular to the cylinder axis. The self-assemblies with different lengths of fully charged PE blocks are also discussed. Surprisingly, in the presence of divalent counterions, two dimensional in-plane macroscopic aggregation of micelles is realized when the proportion of PE blocks is larger than 1/2; the self-assembled spherical micelles locate approximately in the same plane to form an inter-linked network. One dimensional aggregation of micelles in the presence of trivalent counterions is maintained with an increased proportion of the PE block. Owing to the dominant intra- and inter-condensation of divalent and trivalent counterions, respectively, two and one dimensional macroscopic aggregation of the micelles is achieved. Our findings indicate that varying the counterion valence is a powerful mechanism to tune the properties of self-assemblies, and the bridging effect introduced by multivalent counterions is the key parameter for the aggregation of the micelles.
Collapse
Affiliation(s)
- Li-Yan Liu
- College of Science, Civil Aviation University of China, Tianjin 300300, China.
| | | | | | | | | |
Collapse
|
11
|
Xu W, Rudov AA, Schroeder R, Portnov IV, Richtering W, Potemkin II, Pich A. Distribution of Ionizable Groups in Polyampholyte Microgels Controls Interactions with Captured Proteins: From Blockade and "Levitation" to Accelerated Release. Biomacromolecules 2019; 20:1578-1591. [PMID: 30822384 DOI: 10.1021/acs.biomac.8b01775] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A striking discovery in our work is that the distribution of ionizable groups in polyampholyte microgels (random and core-shell) controls the interactions with the captured proteins. Polyampholyte microgels are capable to switch reversibly their charges from positive to negative depending on pH. In this work, we synthesized differently structured polyampholyte microgels with controlled amounts and different distribution of acidic and basic moieties as colloidal carriers to study the loading and release of the model protein cytochrome c (cyt-c). Polyampholyte microgels were first loaded with cyt-c using the electrostatic attraction under pH 8 when the microgels were oppositely charged with respect to the protein. Then the protein release was investigated under different pH (3, 6, and 8) both with experimental methods and molecular dynamics simulations. For microgels with a random distribution of ionizable groups complete and accelerated (compared to polyelectrolyte counterpart) release of cyt-c was observed due to electrostatic repulsive interactions. For core-shell structured microgels with defined ionizable groups, it was possible to entrap the protein inside the neutral core through the formation of a positively charged shell, which acts as an electrostatic potential barrier. We postulate that this discovery allows the design of functional colloidal carriers with programmed release kinetics for applications in drug delivery, catalysis, and biomaterials.
Collapse
Affiliation(s)
- Wenjing Xu
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50 , 52074 Aachen , Germany
| | - Andrey A Rudov
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Physics Department , Lomonosov Moscow State University , GSP-1, 1-2 Leninskiye Gory 119991 Moscow , Russian Federation
| | - Ricarda Schroeder
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50 , 52074 Aachen , Germany
| | - Ivan V Portnov
- Physics Department , Lomonosov Moscow State University , GSP-1, 1-2 Leninskiye Gory 119991 Moscow , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Physics Department , Lomonosov Moscow State University , GSP-1, 1-2 Leninskiye Gory 119991 Moscow , Russian Federation.,National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University , Brightlands Chemelot Campus, Urmonderbaan22 , 6167 RD Geleen , The Netherlands
| |
Collapse
|
12
|
Landsgesell J, Nová L, Rud O, Uhlík F, Sean D, Hebbeker P, Holm C, Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. SOFT MATTER 2019; 15:1155-1185. [PMID: 30706070 DOI: 10.1039/c8sm02085j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhong Q, Lu M, Nieuwenhuis S, Wu BS, Wu GP, Xu ZK, Müller-Buschbaum P, Wang JP. Enhanced Stain Removal and Comfort Control Achieved by Cross-Linking Light and Thermo Dual-Responsive Copolymer onto Cotton Fabrics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5414-5426. [PMID: 30640436 DOI: 10.1021/acsami.8b19908] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enhanced capabilities of stain removal and comfort control are simultaneously achieved by the light and thermo dual-responsive copolymer poly(triethylene glycol methyl ether methacrylate- co-ethylene glycol methacrylate- co-acrylamide azobenzene) (P(MEO3MA- co-EGMA- co-AAAB)) cross-linked on cotton fabrics. P(MEO3MA- co-EGMA- co-AAAB) is synthesized by sequential atom transfer radical polymerization with a molar ratio of 8 (MEO3MA):1 (EGMA):1 (AAAB). The MEO3MA units induce a thermoresponsive behavior to the copolymer. The hydrophilicity of the copolymer films can be further improved by the light-induced trans- cis isomerization of the AAAB units with UV radiation. The copolymer is facilely immobilized onto cotton fabrics with 1,2,3,4-butane tetracarboxylic acid as cross-linker. Due to the immobilization of P(MEO3MA- co-EGMA- co-AAAB), the hydrophilicity of the fabric surface is increased under UV radiation. Therefore, by simply installing a UV light source in the washing machine, better capability of stain removal is realized for the cross-linked cotton fabrics. It can prominently reduce the consumption of energy, water, and surfactants in laundry. In addition, the trans-AAAB units of the copolymer cause the cross-linked P(MEO3MA- co-EGMA- co-AAAB) layer to be more hydrophobic under ambient conditions. Hence, the copolymer can more easily collapse and form a porous structure on the fabrics. Thus, the air permeability of cotton fabrics cross-linked with P(MEO3MA- co-EGMA- co-AAAB) is enhanced by 13% at human body temperature as compared to P(MEO3MA- co-EGMA), giving improved comfort control during daily wear.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry , Zhejiang Sci-Tech University , 310018 Hangzhou , China
- Technische Universität München, Physik-Department , Lehrstuhl für Funktionelle Materialien , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Min Lu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Sophie Nieuwenhuis
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Bi-Sheng Wu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhi-Kang Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department , Lehrstuhl für Funktionelle Materialien , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Ji-Ping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| |
Collapse
|
14
|
Wiehemeier L, Cors M, Wrede O, Oberdisse J, Hellweg T, Kottke T. Swelling behaviour of core–shell microgels in H2O, analysed by temperature-dependent FTIR spectroscopy. Phys Chem Chem Phys 2019; 21:572-580. [DOI: 10.1039/c8cp05911j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The structural basis for linear thermoresponses of smart core–shell microgels is elucidated by FTIR spectroscopy, being sensitive to core processes.
Collapse
Affiliation(s)
- Lars Wiehemeier
- Physical and Biophysical Chemistry
- Department of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Marian Cors
- Physical and Biophysical Chemistry
- Department of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Oliver Wrede
- Physical and Biophysical Chemistry
- Department of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C)
- University of Montpellier
- CNRS
- 34095 Montpellier
- France
| | - Thomas Hellweg
- Physical and Biophysical Chemistry
- Department of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry
- Department of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| |
Collapse
|
15
|
Gelissen APH, Scotti A, Turnhoff SK, Janssen C, Radulescu A, Pich A, Rudov AA, Potemkin II, Richtering W. An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core-shell responsive microgels. SOFT MATTER 2018; 14:4287-4299. [PMID: 29774926 DOI: 10.1039/c8sm00397a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To realize carriers for drug delivery, cationic containers are required for anionic guests. Nevertheless, the toxicity of cationic carriers limits their practical use. In this study, we investigate a model system of polyampholyte N-isopropylacrylamide (NIPAM)-based microgels with a cationic core and an anionic shell to study whether the presence of a negative shell allows the cationic core to be shielded while still enabling the uptake and release of the anionic guest polyelectrolytes. These microgels are loaded with polystyrene sulfonate of different molecular weights to investigate the influence of their chain length on the uptake and release process. By means of small-angle neutron scattering, we evaluate the spatial distribution of polystyrene sulfonate within the microgels. The guest molecules are located in different parts of the core-shell microgels depending on their size. By combining these scattering results with UV-vis spectroscopy, electrophoretic mobility and potentiometric titrations we gain complementary results to investigate the uptake and release process of polyelectrolytes in polyampholyte core-shell microgels. Moreover, Brownian molecular dynamic simulations are performed to compare the experimental and theoretical results of this model. Our findings demonstrate that the presence of a shell still enables efficient uptake of guest molecules into the cationic core. These anionic guest molecules can be released through an anionic shell. Furthermore, the presence of a shell enhances the stability of the microgel-polyelectrolyte complexes with respect to the cationic precursor microgel alone.
Collapse
Affiliation(s)
- Arjan P H Gelissen
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brugnoni M, Scotti A, Rudov AA, Gelissen APH, Caumanns T, Radulescu A, Eckert T, Pich A, Potemkin II, Richtering W. Swelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02722] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Andrey A. Rudov
- DWI - Leibniz Institute
for Interactive Materials e.V., 52056 Aachen, Germany
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | | | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany
| | - Aurel Radulescu
- Jülich
Centre
for Neutron Science, Outstation at MLZ, 85748 Garching, Germany
| | | | - Andrij Pich
- DWI - Leibniz Institute
for Interactive Materials e.V., 52056 Aachen, Germany
| | - Igor I. Potemkin
- DWI - Leibniz Institute
for Interactive Materials e.V., 52056 Aachen, Germany
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- National Research
South
Ural State University, 454080 Chelyabinsk, Russian Federation
| | | |
Collapse
|
17
|
Haag SL, Bernards MT. Polyampholyte Hydrogels in Biomedical Applications. Gels 2017; 3:E41. [PMID: 30920536 PMCID: PMC6318660 DOI: 10.3390/gels3040041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Polyampholytes are a class of polymers made up of positively and negatively charged monomer subunits. Polyampholytes offer a unique tunable set of properties driven by the interactions between the charged monomer subunits. Some tunable properties of polyampholytes include mechanical properties, nonfouling characteristics, swelling due to changes in pH or salt concentration, and drug delivery capability. These characteristics lend themselves to multiple biomedical applications, and this review paper will summarize applications of polyampholyte polymers demonstrated over the last five years in tissue engineering, cryopreservation and drug delivery.
Collapse
Affiliation(s)
- Stephanie L Haag
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83843, USA.
| | - Matthew T Bernards
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83843, USA.
| |
Collapse
|