1
|
Kirk BP, Bjuggren JM, Andersson GG, Dastoor P, Andersson MR. Printing and Coating Techniques for Scalable Organic Photovoltaic Fabrication. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2511. [PMID: 38893776 PMCID: PMC11173114 DOI: 10.3390/ma17112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Within recent years, there has been an increased interest towards organic photovoltaics (OPVs), especially with their significant device performance reaching beyond 19% since 2022. With these advances in the device performance of laboratory-scaled OPVs, there has also been more attention directed towards using printing and coating methods that are compatible with large-scale fabrication. Though large-area (>100 cm2) OPVs have reached an efficiency of 15%, this is still behind that of laboratory-scale OPVs. There also needs to be more focus on determining strategies for improving the lifetime of OPVs that are suitable for scalable manufacturing, as well as methods for reducing material and manufacturing costs. In this paper, we compare several printing and coating methods that are employed to fabricate OPVs, with the main focus towards the deposition of the active layer. This includes a comparison of performances at laboratory (<1 cm2), small (1-10 cm2), medium (10-100 cm2), and large (>100 cm2) active area fabrications, encompassing devices that use scalable printing and coating methods for only the active layer, as well as "fully printed/coated" devices. The article also compares the research focus of each of the printing and coating techniques and predicts the general direction that scalable and large-scale OPVs will head towards.
Collapse
Affiliation(s)
- Bradley P. Kirk
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Jonas M. Bjuggren
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Gunther G. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Paul Dastoor
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mats R. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
2
|
Liang S, Xiao C, Xie C, Liu B, Fang H, Li W. 13% Single-Component Organic Solar Cells based on Double-Cable Conjugated Polymers with Pendent Y-Series Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300629. [PMID: 36814317 DOI: 10.1002/adma.202300629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Indexed: 05/05/2023]
Abstract
Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Kausar A. Epitome of Fullerene in Conducting Polymeric Nanocomposite—Fundamentals and Beyond. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
4
|
Yuan K, Lv L, Xu Y, Liu Y, Li M, Zhao Y, Zhao X. Grape bunches of novel conjugated chain bonded fullerene oligomers: design of a potential electron trap carbonaceous molecular material. Phys Chem Chem Phys 2023; 25:5743-5757. [PMID: 36744403 DOI: 10.1039/d2cp05731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Developing π electron conjugated groups as covalent bonded bridges between fullerenes in their oligomers is key to optimizing and maximizing functions of the fullerene-based materials. In this work, a series of novel conjugated chain bonded fullerene C60 oligomers (CBFOs) with a well-defined nano-architecture and "grape bunches" shapes are rationally designed and viably constructed based on fullerene-carbenes by means of DFT calculations. The results show that the presently designed CBFOs present a much better electron-accepting ability together with a much lower reorganization energy than the isolated fullerene C60, and characterized as the potential ideal candidate for electron acceptors. The frontier molecular orbital and electron density analysis can well support the results of diabatic electron affinity (EAa) and vertical electron affinity (EAv) calculations. Moreover, these CBFOs exhibit strong absorption in the visible region but no obvious absorption in the ultraviolet region. In addition, the optical properties of the CBFOs and two dimensional structure are also simulated and explored theoretically. We hope that the present study would be helpful for developing covalent-bonded-fullerene based electron trap molecular materials, building blocks of nano-devices and nano-machinery applications.
Collapse
Affiliation(s)
- Kun Yuan
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Lingling Lv
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Yan Xu
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Yanzhi Liu
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yaoxiao Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.,Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
6
|
Kausar A. Fullerene grafting in polymeric nanocomposite—a promising strategy. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2175219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad, Pakistan
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West, South Africa
| |
Collapse
|
7
|
Wang R, Xia D, Jiang X, Zhao C, Zhou S, Fang H, Wang J, Tang Z, Xiao C, Li W. N-Annulated Perylene Bisimide-Based Double-Cable Polymers with Open-Circuit Voltage Approaching 1.20 V in Single-Component Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47952-47960. [PMID: 36222398 DOI: 10.1021/acsami.2c10466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we have introduced single/double-sided N-annulated perylene bisimide (PBI) with deep energy levels into double-cable polymers with poly[1-(5-(4,8-bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,7-bis(2-ethylhexyl)-3-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione] (PBDB-T-Cl) as a donor backbone, marking as s-PPNR and as-PPNR, according to the molecular symmetry. Both double-cable polymers displayed a high open-circuit voltage approaching 1.20 V in light of high energy level discrepancy between electron-donating and electron-withdrawing parts, which is the highest open-circuit voltage among double-cable-based single-component organic solar cell (SCOSC) devices. Additionally, the asymmetric polymer displayed improved absorption spectra, thereby promoting crystallization and phase separation. Consequently, the as-PPNR-based SCOSCs achieved a power conversion efficiency of 5.05% along with a higher short-circuit current density and fill factor than their s-PPNR-based counterparts. In this work, we have successfully incorporated N-annulated PBI into double-cable polymers and revealed the important effects on structural symmetry and phase separation of double-cable polymers for higher SCOSC performance.
Collapse
Affiliation(s)
- Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dongdong Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Xudong Jiang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Shengxi Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double-Cable Conjugated Polymers with Pendent Near-Infrared Electron Acceptors for Single-Component Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209316. [PMID: 35785422 DOI: 10.1002/anie.202209316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850 nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunhua Xu
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany.,State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double‐Cable Conjugated Polymers with Pendent Near‐Infrared Electron Acceptors for Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shijie Liang
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Baiqiao Liu
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | - Jing Wang
- Donghua University College of Materials Science and Engineering CHINA
| | - Yakun He
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Wen Liang Tan
- Monash University Department of Materials Science and Engineering AUSTRALIA
| | - Hao Li
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Yunhua Xu
- Beijing Jiaotong University College of Materials Science and Engineering CHINA
| | - Ning Li
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Zheng Tang
- Donghua University College of Materials Science and Engineering CHINA
| | - Frédéric Laquai
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | | | - Christoph J. Brabec
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Weiwei Li
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing 100029 100190 Beijing CHINA
| |
Collapse
|
10
|
Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Liu BQ, Xu YH, Liu F, Xie CC, Liang SJ, Chen QM, Li WW. Double-Cable Conjugated Polymers with Fullerene Pendant for Single-Component Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2732-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Lee YW, Yeop J, Kim JY, Woo HY. Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core. Macromol Res 2022. [DOI: 10.1007/s13233-021-9100-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Haghighat Bayan MA, Afshar Taromi F, Lanzi M, Pierini F. Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells. Sci Rep 2021; 11:21144. [PMID: 34707121 PMCID: PMC8551186 DOI: 10.1038/s41598-021-00580-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Over the last decade, nanotechnology and nanomaterials have attracted enormous interest due to the rising number of their applications in solar cells. A fascinating strategy to increase the efficiency of organic solar cells is the use of tailor-designed buffer layers to improve the charge transport process. High-efficiency bulk heterojunction (BHJ) solar cells have been obtained by introducing hollow core polyaniline (PANI) nanofibers as a buffer layer. An improved power conversion efficiency in polymer solar cells (PSCs) was demonstrated through the incorporation of electrospun hollow core PANI nanofibers positioned between the active layer and the electrode. PANI hollow nanofibers improved buffer layer structural properties, enhanced optical absorption, and induced a more balanced charge transfer process. Solar cell photovoltaic parameters also showed higher open-circuit voltage (+ 40.3%) and higher power conversion efficiency (+ 48.5%) than conventional architecture BHJ solar cells. Furthermore, the photovoltaic cell developed achieved the highest reported efficiency value ever reached for an electrospun fiber-based solar cell (PCE = 6.85%). Our results indicated that PANI hollow core nanostructures may be considered an effective material for high-performance PSCs and potentially applicable to other fields, such as fuel cells and sensors.
Collapse
Affiliation(s)
- Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Department of Polymer Engineering, Amirkabir University of Technology, 15875-4414, Tehran, Iran
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering, Amirkabir University of Technology, 15875-4414, Tehran, Iran
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna, 40136, Bologna, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
14
|
Hoang NV, Nikolis VC, Baisinger L, Vandewal K, Pshenichnikov MS. Diffusion-enhanced exciton dissociation in single-material organic solar cells. Phys Chem Chem Phys 2021; 23:20848-20853. [PMID: 34546274 DOI: 10.1039/d1cp03328j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-material organic solar cells have recently attracted research attention due to their simplicity, morphological robustness and high yield of exciton dissociation. Using α-sexithiophene as a model system, we show that the single-event probability of the exciton dissociation at the boundaries of polycrystalline domains with different molecular orientation is extremely low (∼0.5%), while a high efficiency of charge generation is gained via hundred-fold crossings of the domain boundaries due to the long exciton diffusion length (∼45 nm).
Collapse
Affiliation(s)
- Nong V Hoang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Vasileios C Nikolis
- Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Nöthnitzer Strasse 61, 01187, Dresden, Germany.,Heliatek GmbH, Treidlerstrasse 3, 01139, Dresden, Germany
| | - Lukasz Baisinger
- Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Nöthnitzer Strasse 61, 01187, Dresden, Germany
| | - Koen Vandewal
- Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Nöthnitzer Strasse 61, 01187, Dresden, Germany.,Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
15
|
Lee YW, Yeop J, Lim H, Park WW, Joung JF, Park S, Kwon OH, Kim JY, Woo HY. Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43174-43185. [PMID: 34460240 DOI: 10.1021/acsami.1c14901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two kinds of dumbbell-shaped acceptor-donor-acceptor (A-D-A)-type triad single-component (SC) photovoltaic molecules based on a benzodithiophene-rhodanine (BDTRh) core and [6,6]-phenyl-C61 butyric acid (PC61BA) termini, BDTRh-C2-PC61BA and BDTRh-C10-PC61BA, were synthesized by modulating the alkyl (C2 and C10) spacer lengths. Both SC photovoltaic structures had similar UV-vis spectra in solution, but BDTRh-C10-PC61BA showed a significantly higher absorption coefficient as a thin film. In films, a more facile intermolecular photo-induced charge transfer was observed for BDTRh-C10-PC61BA in the broad-band transient absorption measurements. BDTRh-C10-PC61BA also exhibited a higher hole mobility (by 25 times) and less bimolecular recombination than BDTRh-C2-PC61BA. By plotting the normalized external quantum efficiency data, a higher charge-transfer state was measured for BDTRh-C10-PC61BA, reducing its voltage loss. A higher power conversion efficiency of ∼2% was obtained for BDTRh-C10-PC61BA, showing higher open-circuit voltage, short-circuit current density, and fill factor than those of BDTRh-C2-PC61BA devices. The different carrier dynamics, voltage loss, and optical and photoelectrical characteristics depending on the spacer length were interpreted in terms of the film morphology. The longer decyl spacer in BDTRh-C10-PC61BA afforded a significantly enhanced intermolecular ordering of the p-type core compared to BDTRh-C2-PC61BA, suggesting that the alkyl spacer length plays a critical role in controlling the intermolecular packing interaction.
Collapse
Affiliation(s)
- Young Woong Lee
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Jiwoo Yeop
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyojin Lim
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joonyoung Francis Joung
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Kim
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han Young Woo
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Liang S, Jiang X, Xiao C, Li C, Chen Q, Li W. Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Acc Chem Res 2021; 54:2227-2237. [PMID: 33852280 DOI: 10.1021/acs.accounts.1c00070] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ConspectusConjugated polymers for application in organic solar cells (OSCs) have been developed from poly(phenylenevinylene) to poly(3-hexylthiophene) and then to "donor-acceptor" structures, providing power conversion efficiencies (PCEs) over 18% when blending with the electron acceptor as a two-component photoactive layer. Besides, graft-structural double-cable conjugated polymers that use an electron donor as conjugated backbones and an electron acceptor as pendant side units are one kind of conjugated polymer, in which charge carriers are generated in a single polymer. Therefore, double-cable conjugated polymers can be used as a single photoactive layer in single-component OSCs (SCOSCs). The covalently linked electron donor and acceptor enable double-cable polymers to maintain stable microstructures during long-term operation compared to two-component systems, which is very important for OSCs toward large-area applications. However, SCOSCs based on double-cable conjugated polymers provided PCEs below 3% in a long period, which is lagging far behind PCEs of two-component OSCs. The key reason for this is the limited number of chemical structures and the difficulty to tune the morphology in these polymers.In this Account, we provide an overview about our efforts on developing new double-cable conjugated polymers with rylene diimides as side units, and how to realize high PCEs in SCOSC devices. The studies start from developing a "functionalization-polymerization" method to synthesize the polymers containing rylene diimide acceptors, so that large amounts of double-cable conjugated polymers with distinct physical and electrochemical properties were obtained. Then, we will discuss how to control the nanophase separation in the crystalline region and optimize the miscibility in the amorphous region of double-cable polymers, simultaneously facilitating exciton dissociation and charge transport. With these efforts, a high PCE of 8.4% has been obtained, representing the record PCE in SCOSCs. In addition, the physical process and the stability of SCOSCs will be discussed. We hope that this account will inspire many innovative studies in this field and push the PCEs of SCOSCs to a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xudong Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
17
|
Bednarczyk K, Matysiak W, Tański T, Janeczek H, Schab-Balcerzak E, Libera M. Effect of polyaniline content and protonating dopants on electroconductive composites. Sci Rep 2021; 11:7487. [PMID: 33820925 PMCID: PMC8021568 DOI: 10.1038/s41598-021-86950-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Elastic constructive elements prepared by electrospinning using polyacrylonitrile/polyaniline (PAN/PANI) electroconductive composites were prepared and investigated in terms of their thermal and mechanical properties. This study was focused on the impact of the type of counterion of polyaniline and the PANI content in composites on the thermal, conductive and morphological properties of electrospun fibers. In this study, composites obtained from PANI doped with sulfuric acid showed the highest conductivity, and composites obtained from PANI doped with hydrochloric acid showed the highest thermal stability. All obtained composites exhibited good thermal stability, with T5 values in the range of 230–268 °C that increased with increasing PANI content. The prepared composites exhibited comparable PAN Tg values, which indicates their suitability for processing. Instrumental analysis of polymers and composites was carried out using UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis and scanning electron microscopy.
Collapse
Affiliation(s)
- Katarzyna Bednarczyk
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006, Katowice, Poland
| | - Wiktor Matysiak
- Institute of Engineering Materials and Biomaterials, Silesia University of Technology, 18A Konarskiego Str., 44-100, Gliwice, Poland
| | - Tomasz Tański
- Institute of Engineering Materials and Biomaterials, Silesia University of Technology, 18A Konarskiego Str., 44-100, Gliwice, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskej Str., 41-819, Zabrze, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006, Katowice, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskej Str., 41-819, Zabrze, Poland
| | - Marcin Libera
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006, Katowice, Poland.
| |
Collapse
|
18
|
Dong YZ, Kim HM, Choi HJ. Conducting polymer-based electro-responsive smart suspensions. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01550-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
De Sio L, Ding B, Focsan M, Kogermann K, Pascoal-Faria P, Petronela F, Mitchell G, Zussman E, Pierini F. Personalized Reusable Face Masks with Smart Nano-Assisted Destruction of Pathogens for COVID-19: A Visionary Road. Chemistry 2021; 27:6112-6130. [PMID: 33284500 DOI: 10.1002/chem.202004875] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Indexed: 12/13/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) emergency has demonstrated that the utilization of face masks plays a critical role in limiting the outbreak. Healthcare professionals utilize masks all day long without replacing them very frequently, thus representing a source of cross-infection for patients and themselves. Nanotechnology is a powerful tool with the capability to produce nanomaterials with unique physicochemical and antipathogen properties. Here, how to realize non-disposable and highly comfortable respirators with light-triggered self-disinfection ability by bridging bioactive nanofiber properties and stimuli-responsive nanomaterials is outlined. The visionary road highlighted in this Concept is based on the possibility of developing a new generation of masks based on multifunctional membranes where the presence of nanoclusters and plasmonic nanoparticles arranged in a hierarchical structure enables the realization of a chemically driven and on-demand antipathogen activities. Multilayer electrospun membranes have the ability to dissipate humidity present within the mask, enhancing the wearability and usability. The photothermal disinfected membrane is the core of these 3D printed and reusable masks with moisture pump capability. Personalized face masks with smart nano-assisted destruction of pathogens will bring enormous advantages to the entire global community, especially for front-line personnel, and will open up great opportunities for innovative medical applications.
Collapse
Affiliation(s)
- Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,CNR-Lab. Licryl, Institute NANOTEC, 87036, Arcavacata di Rende, Italy
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, West Yan'an Road 1882, Shanghai, 200051, P. R. China
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271, Cluj-Napoca, Romania
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Paula Pascoal-Faria
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal, 2430-080, Marinha Grande, Portugal
| | - Francesca Petronela
- Institute of Crystallography CNR-IC, National Research Council of Italy, Via Salaria Km 29,300, 00015, Monterotondo, Rome, Italy
| | - Geoffrey Mitchell
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal, 2430-080, Marinha Grande, Portugal
| | - Eyal Zussman
- Department of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland
| |
Collapse
|
20
|
Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers (Basel) 2021; 13:polym13010155. [PMID: 33401538 PMCID: PMC7794755 DOI: 10.3390/polym13010155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
Textile manufacturing has been one of the highest polluting industrial sectors. It represents about one-fifth of worldwide industrial water pollution. It uses a huge number of chemicals, numerous of which are carcinogenic. The textile industry releases many harmful chemicals, such as heavy metals and formaldehyde, into water streams and soil, as well as toxic gases such as suspended particulate matter and sulphur dioxide to air. These hazardous wastes, may cause diseases and severe problems to human health such as respiratory and heart diseases. Pollution caused by the worldwide textile manufacturing units results in unimaginable harm, such as textile polymers, auxiliaries and dyes, to the environment. This review presents a systematic and comprehensive survey of all recently produced high-performance textiles; and will therefore assist a deeper understanding of technical textiles providing a bridge between manufacturer and end-user. Moreover, the achievements in advanced applications of textile material will be extensively studied. Many classes of technical textiles were proved in a variety of applications of different fields. The introductory material- and process-correlated identifications regarding raw materials and their transformation into yarns, fibers and fabrics followed by dyeing, printing, finishing of technical textiles and their further processing will be explored. Thus, the environmental impacts of technical textiles on soil, air and water are discussed.
Collapse
|
21
|
Efficient and thermally stable BHJ solar cells based on a soluble hydroxy-functionalized regioregular polydodecylthiophene. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Turelli M, Alberga D, Lattanzi G, Ciofini I, Adamo C. Theoretical insights on acceptor-donor dyads for organic photovoltaics. Phys Chem Chem Phys 2020; 22:27413-27424. [PMID: 33231587 DOI: 10.1039/d0cp03038d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of organic photovoltaics has witnessed a steady growth in the last few decades and a recent renewal with the blossoming of single-material organic solar cells (SMOSCs). However, due to the intrinsic complexity of these devices (both in terms of their size and of the condensed phases involved), computational approaches to accurately predict their geometrical and electronic structure and to link their microscopic properties to the observed macroscopic behaviour are still lacking. In this work, we have focused on the rationalization of transport dynamics and we have set up a computational approach that makes a combined use of classical simulations and Density Functional Theory with the aim of disclosing the most relevant electronic and structural features of dyads used for SMOSC applications. As a prototype dyad, we have considered a molecule that consists in a dithiafulvalene-functionalized diketopyrrolopyrrole (DPP), acting as an electron donor, covalently linked to a fulleropyrrolidine (Ful), the electron acceptor. Our results, beside a quantitative agreement with experiments, show that the overall observed mobilities result from the competing packing mechanisms of the constituting units within the dyad both in the case of crystalline and amorphous phases. As a consequence, not all stable polymorphs have the same efficiency in transporting holes or electrons which often results in a highly directional carrier transport that is not, in general, a desirable feature for polycrystalline thin-films. The present work, linking microscopic packing to observed transport, thus opens the route for the in silico design of new dyads with enhanced and controlled structural and electronic features.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | | | | | | | | |
Collapse
|
23
|
Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Jiang X, Yang J, Karuthedath S, Li J, Lai W, Li C, Xiao C, Ye L, Ma Z, Tang Z, Laquai F, Li W. Miscibility‐Controlled Phase Separation in Double‐Cable Conjugated Polymers for Single‐Component Organic Solar Cells with Efficiencies over 8 %. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xudong Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jinjin Yang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Junyu Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenbin Lai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300350 P. R. China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Institute of Applied Chemistry Jiangxi Academy of Sciences Nanchang 330096 P. R. China
| |
Collapse
|
25
|
Jiang X, Yang J, Karuthedath S, Li J, Lai W, Li C, Xiao C, Ye L, Ma Z, Tang Z, Laquai F, Li W. Miscibility-Controlled Phase Separation in Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiencies over 8 . Angew Chem Int Ed Engl 2020; 59:21683-21692. [PMID: 32815586 DOI: 10.1002/anie.202009272] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 02/03/2023]
Abstract
A record power conversion efficiency of 8.40 % was obtained in single-component organic solar cells (SCOSCs) based on double-cable conjugated polymers. This is realized based on exciton separation playing the same role as charge transport in SCOSCs. Two double-cable conjugated polymers were designed with almost identical conjugated backbones and electron-withdrawing side units, but extra Cl atoms had different positions on the conjugated backbones. When Cl atoms were positioned at the main chains, the polymer formed the twist backbones, enabling better miscibility with the naphthalene diimide side units. This improves the interface contact between conjugated backbones and side units, resulting in efficient conversion of excitons into free charges. These findings reveal the importance of charge generation process in SCOSCs and suggest a strategy to improve this process: controlling miscibility between conjugated backbones and aromatic side units in double-cable conjugated polymers.
Collapse
Affiliation(s)
- Xudong Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinjin Yang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Junyu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenbin Lai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| |
Collapse
|
26
|
Control of the optical properties upon a reversible [2+2] cycloaddition of 3-(4-N,N-dibutylamino)-styryl)-3’-(dicyanovinyl)-bithiophene. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
High-efficiency polymer solar cells controlled by photoelectrochemically formed ordered polythiophene active layers with various thicknesses. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Hajduk B, Bednarski H, Domański M, Jarząbek B, Trzebicka B. Thermal Transitions in P3HT:PC60BM Films Based on Electrical Resistance Measurements. Polymers (Basel) 2020; 12:E1458. [PMID: 32629756 PMCID: PMC7407113 DOI: 10.3390/polym12071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/20/2023] Open
Abstract
In this paper, we present research on thermal transition temperature determination in poly (3-hexylthiophene-2,5-diyl) (P3HT), [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM), and their blends, which are materials that are conventionally used in organic optoelectronics. Here, for the first time the results of electrical resistance measurements are explored to detect thermal transitions temperatures, such as glass transition Tg and cold crystallization Tcc of the film. To confirm these results, the variable-temperature spectroscopic ellipsometry studies of the same samples were performed. The thermal transitions temperatures obtained with electrical measurements are well suited to phase diagram, constructed on the basis of ellipsometry in our previous work. The data presented here prove that electrical resistance measurements alone are sufficient for qualitative thermal analysis, which lead to the identification of characteristic temperatures in P3HT:PC60BM films. Based on the carried studies, it can be expected that the determination of thermal transition temperatures by means of electrical resistance measurements will also apply to other semi-conducting polymer films.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska str., 41-819 Zabrze, Poland; (H.B.); (M.D.); (B.J.)
| | | | | | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska str., 41-819 Zabrze, Poland; (H.B.); (M.D.); (B.J.)
| |
Collapse
|
29
|
Park SH, Kim Y, Kwon NY, Lee YW, Woo HY, Chae W, Park S, Cho MJ, Choi DH. Significantly Improved Morphology and Efficiency of Nonhalogenated Solvent-Processed Solar Cells Derived from a Conjugated Donor-Acceptor Block Copolymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902470. [PMID: 32099759 PMCID: PMC7029657 DOI: 10.1002/advs.201902470] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/30/2019] [Indexed: 06/08/2023]
Abstract
A highly crystalline conjugated donor (D)-acceptor (A) block copolymer (PBDT2T-b-N2200) that has good solubility in nonhalogenated solvents is successfully synthesized. PBDT2T-b-N2200 shows a broad complementary absorption behavior owing to a wide-band gap donor (PBDT2T) present as a D-block and a narrow-band gap acceptor (N2200) present as an A-block. Polymer solar cells (PSCs) with conjugated block copolymer (CBCP) are fabricated using a toluene solution and PSC created with an annealed film showing the highest power conversion efficiency of 6.43%, which is 2.4 times higher than that made with an annealed blend film of PBDT2T and N2200. Compared to the blend film, the PBDT2T-b-N2200 film exhibits a highly improved surface and internal morphology, as well as a faster photoluminescence decay lifetime, indicating a more efficient photoinduced electron transfer. In addition, the PBDT2T-b-N2200 film shows high crystallinity through an effective self-assembly of each block during thermal annealing and a predominant face-on chain orientation favorable to a vertical-type PSC. Moreover, the CBCP-based PSCs exhibit an excellent shelf-life time of over 1020 h owing to their morphological stability. From these results, a D-A block copolymer system is one of the efficient strategies to improve miscibility and morphological stability in all polymer blend systems.
Collapse
Affiliation(s)
- Su Hong Park
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Youngseo Kim
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Na Yeon Kwon
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Young Woong Lee
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Han Young Woo
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Weon‐Sik Chae
- Daegu CenterKorea Basic Science Institute80 Daehakro, BukguDaegu41566South Korea
| | - Sungnam Park
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Min Ju Cho
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| | - Dong Hoon Choi
- Department of ChemistryResearch Institute for Natural SciencesKorea University145 Anam‐Ro, Sungbuk‐guSeoul02841South Korea
| |
Collapse
|
30
|
Yan W, Jiang D, Liu Q, Kang Q, Zhou F. Effects of doping methods and dopant sizes on the performance of solar cells constructed with anchor-guided photoelectrochemical polymerization of thiophene. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Lanzi M, Pierini F. Effect of Electron-Acceptor Content on the Efficiency of Regioregular Double-Cable Thiophene Copolymers in Single-Material Organic Solar Cells. ACS OMEGA 2019; 4:19863-19874. [PMID: 31788619 PMCID: PMC6882105 DOI: 10.1021/acsomega.9b02790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Three regioregular thiophenic copolymers, characterized by a bromine atom or a C60-fullerene group at different molar ratios at the end of a decamethylenic plastifying side chain, have been successfully synthesized using a straightforward postpolymerization functionalization procedure based on a Grignard coupling reaction. Owing to their good solubility in common organic solvents, the products were fully characterized using chromatographic, spectroscopic, thermal, and morphological techniques and used as single materials in the photoactive layers of organic solar cells. The photoconversion efficiencies obtained with copolymers were compared with those of a reference cell prepared using a physical blend of the precursor homopolymer and [6,6]-phenyl-C61-butyric acid methyl ester. The best results were obtained with COP2, the copolymer with a 21% molar content of C60-functionalized side chains. The use of the double-cable polymer made possible an enhanced control on the nanomorphology of the active blend, thus reducing phase-segregation phenomena as well as the macroscale separation between the electron-acceptor and -donor components, yielding a power conversion efficiency higher than that of the reference cell (4.05 vs 3.68%). Moreover, the presence of the halogen group was exploited for the photo-cross-linking of the active layer immediately after the thermal annealing procedure. The cross-linked samples showed an increased stability over time, leading to good efficiencies even after 120 h of accelerated aging: this was a key feature for the widespread practical applicability of the prepared devices.
Collapse
Affiliation(s)
- Massimiliano Lanzi
- Department of Industrial
Chemistry “Toso Montanari”, Alma Mater Studiorum-University of Bologna, Bologna 40136, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of
Fundamental Technological Research, Polish
Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
32
|
Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Crystalline Cooperativity of Donor and Acceptor Segments in Double‐Cable Conjugated Polymers toward Efficient Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2019; 58:15532-15540. [DOI: 10.1002/anie.201910489] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Cheng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xianxin Wu
- Division of NanophotonicsCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xinyu Sui
- Division of NanophotonicsCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Hongbo Wu
- Center for Advanced Low-dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Chao Wang
- College of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Guitao Feng
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinfeng Liu
- Division of NanophotonicsCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
33
|
Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Crystalline Cooperativity of Donor and Acceptor Segments in Double‐Cable Conjugated Polymers toward Efficient Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xianxin Wu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xinyu Sui
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Hongbo Wu
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chao Wang
- College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinfeng Liu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
34
|
Wang W, Sun R, Guo J, Guo J, Min J. An Oligothiophene–Fullerene Molecule with a Balanced Donor–Acceptor Backbone for High‐Performance Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Wang
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Rui Sun
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Jing Guo
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Jie Guo
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences
- Key Laboratory of Materials Processing and Mold Zhengzhou University Ministry of Education Zhengzhou 450002 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
35
|
Wang W, Sun R, Guo J, Guo J, Min J. An Oligothiophene–Fullerene Molecule with a Balanced Donor–Acceptor Backbone for High‐Performance Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2019; 58:14556-14561. [DOI: 10.1002/anie.201908232] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Wang
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Rui Sun
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Jing Guo
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Jie Guo
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences
- Key Laboratory of Materials Processing and Mold Zhengzhou University Ministry of Education Zhengzhou 450002 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
36
|
|
37
|
Electrochemical, spectroelectrochemical and surface photovoltage study of ambipolar C60-EDOT and C60-Carbazole based conducting polymers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Yan W, Jiang D, Liu Q, Kang Q, Zhou F. Solar Cells Constructed with Polythiophene Thin Films Grown along Tethered Thiophene-Dye Conjugates via Photoelectrochemical Polymerization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18755-18762. [PMID: 31026134 DOI: 10.1021/acsami.9b04414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A polythiophene-based solar cell (PTSC) is constructed by photoelectrochemically polymerizing thiophene onto an ultrathin compact TiO2 layer (150 nm thick) covered with a sub-monolayer of tethered 3-{5-[ N, N-bis(4-diphenylamino)phenyl]thieno[3,2- b]thiophen-2-yl}-2-cyano-acrylic acid dye (ca. 10% coverage). The influence of morphology and thickness of the PT film on the photocurrent generated by the PTSC was investigated. With a 270 nm thick PT film and 2,2',7,7'-tetrakis( N, N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene serving as the hole-transport material, the PTSC exhibited a short-circuit current density JSC of 12.90 ± 0.63 mA/cm2, an open-circuit voltage VOC of 0.81 ± 0.01 V, and a fill factor of 0.72 ± 0.01. The high conversion efficiency (7.52 ± 0.58%) of the PTSC is attributed to the controlled PT growth along the ordered and spatially accessible dye molecules at the compact TiO2 layer, which facilitates charge transfer, prevents the hole/electron recombination, and simplifies the polymer solar cell construction with a stable and easily processable material.
Collapse
Affiliation(s)
- Wenyuan Yan
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Dianlu Jiang
- Department of Chemistry and Biochemistry , California State University, Los Angeles , Los Angeles , California 90032 , United States
| | - Qinghua Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology , University of Jinan , Jinan , Shandong 250022 , P. R. China
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry , California State University, Los Angeles , Los Angeles , California 90032 , United States
| |
Collapse
|
39
|
Yang F, Li J, Li C, Li W. Improving Electron Transport in a Double-Cable Conjugated Polymer via Parallel Perylenetriimide Design. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00495] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junyu Li
- DSM DMSC R&D Solutions, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiwei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
40
|
One-Dimensional Nanostructure Engineering of Conducting Polymers for Thermoelectric Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have witnessed considerable progress of conducting polymer-based organic thermoelectric materials due to their significant advantages over the traditional inorganic materials. The nanostructure engineering and performance investigation of these conducting polymers for thermoelectric applications have received considerable interest but have not been well documented. This review gives an outline of the synthesis of various one-dimensional (1D) structured conducting polymers as well as the strategies for hybridization with other nanomaterials or polymers. The thermoelectric performance enhancement of these materials in association with the unique morphologies and structures are discussed. Finally, perspectives and suggestions for the future research based on these interesting nanostructuring methodologies for improvement of thermoelectric materials are also presented.
Collapse
|
41
|
Zhang S, Liu H, Tang N, Ge J, Yu J, Ding B. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat Commun 2019; 10:1458. [PMID: 30926802 PMCID: PMC6441005 DOI: 10.1038/s41467-019-09444-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
There is an increasing demand worldwide on advanced two-dimensional (2D) nanofibrous networks with applications ranging from environmental protection and electrical devices to bioengineering. Design of such nanoarchitectured materials has been considered a long-standing challenge. Herein, we report a direct electronetting technology for the fabrication of self-assembled 2D nanoarchitectured networks (nano-nets) from various materials. Tailoring of the precursor solution and of the microelectric field allows charged droplets, which are ejected from a Taylor cone, to levitate, deform and phase separate before they self-assemble a 2D nanofibre network architecture. The fabricated nano-nets show mechanical robustness and benefit from nanostructural properties such as enhanced surface wettability, high transparency, separation and improved air filtration properties. Calcination of the nano-nets results in the formation of carbon nano-nets with electric conductivity and titanium dioxide nano-nets with bioprotective properties.
Collapse
Affiliation(s)
- Shichao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Hui Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Ning Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianlong Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
42
|
Low-Cost CuIn1−xGaxSe2 Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn1−xGaxSe2 hole-transporting material (HTM) layer (<400 nm). The HTM layer was between a bi-layer Mo metal-electrode and a CH3NH3PbI3 (MAPbI3) perovskite active absorbing material. It promoted carrier transportand led to an improved device with good ohmic-contacts. The solar cell was prepared as a bi-layer Mo/CuIn1−xGaxSe2/perovskite/C60/Ag multilayer of nano-structures on an FTO (fluorine-doped tin oxide) glass substrate. The ultra-thin CuIn1−xGaxSe2 HTM layers were annealed at various temperatures of 400, 500, and 600 °C. Scanning electron microscopy studies revealed that the nano-crystal grain size of CuIn1−xGaxSe2 increased with the annealing temperature. The solar cell results show an improved optical power conversion efficiency at ~14.2%. The application of the CuIn1−xGaxSe2 layer with the perovskite absorbing material could be used for designing solar cells with a reduced HTM thickness. The CuIn1−xGaxSe2 HTM has been evidenced to maintain a properopen circuit voltage, short-circuit current density and photovoltaic stability.
Collapse
|
43
|
Agbolaghi S. Settled/unsettled blend nanofibers electrospun from photoactive polymeric/nonpolymeric constituents in PBDT‐DTNT:PCBM solar cells. J Appl Polym Sci 2019. [DOI: 10.1002/app.47591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samira Agbolaghi
- Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani University P.O. Box 5375171379 Tabriz Iran
| |
Collapse
|
44
|
Liu J, Li J, Liu X, Zhang Z, Zhang J, Tu G. Synthesis and Application of Functionalized Diblock Amphiphilic Fullerene Derivatives. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jikang Liu
- Wuhan National Laboratory for Optoelectronics; Huazhong University of Science and Technology; Wuhan Hubei 430074 People's Republic of China
| | - Junli Li
- Wuhan National Laboratory for Optoelectronics; Huazhong University of Science and Technology; Wuhan Hubei 430074 People's Republic of China
| | - Xiangfu Liu
- Wuhan National Laboratory for Optoelectronics; Huazhong University of Science and Technology; Wuhan Hubei 430074 People's Republic of China
| | - Zheling Zhang
- School of Material Science and Technology; Guangxi Key Laboratory of Information Materials; Guilin University of Electronic Technology; 1st Jinji Road, Guilin Guangxi 541004 People's Republic of China
| | - Jian Zhang
- School of Material Science and Technology; Guangxi Key Laboratory of Information Materials; Guilin University of Electronic Technology; 1st Jinji Road, Guilin Guangxi 541004 People's Republic of China
| | - Guoli Tu
- Wuhan National Laboratory for Optoelectronics; Huazhong University of Science and Technology; Wuhan Hubei 430074 People's Republic of China
| |
Collapse
|
45
|
Roncali J, Grosu I. The Dawn of Single Material Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801026. [PMID: 30643714 PMCID: PMC6325606 DOI: 10.1002/advs.201801026] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/22/2018] [Indexed: 05/20/2023]
Abstract
Single material organic solar cells (SMOSCs) are based on ambivalent materials containing electron donor (D) and acceptor (A) units capable to ensure the basic functions of light absorption, exciton dissociation, and charge transport. Compared to bicomponent bulk heterojunctions, SMOSCs present several major advantages such as considerable simplification of cell fabrication and a strong stabilization of the morphology of the D/A interface, and thus of the cell lifetime. In addition to these technical issues, SMOSCs pose fundamental questions regarding the possible formation, and dissociation of excitons on the same molecular D-A architecture. SMOSCs are developed with various approaches, namely "double-cable" polymers, block copolymers, oligomers, and molecules that differ by the donor platform: polymer or molecule, the nature of A, the D-A connection, and the intra- and intermolecular interactions of D and A. Although for several years the maximum efficiency of SMOSCs has remained limited to 1.0-1.5%, impressive progress has been recently accomplished leading to SMOSCs with 4.0-5.0% efficiency. Here, recent advances in the synthesis of D-A materials for SMOSCs are presented in the broader context of the chemistry of organic photovoltaic materials in order to discuss possible directions for future research.
Collapse
Affiliation(s)
- Jean Roncali
- Group Linear Conjugated SystemsMoltech Anjou CNRSUniversity of Angers2Bd lavoisier49045AngersFrance
| | - Ion Grosu
- Supramolecular Organic and Organometallic Chemistry CenterBabeş‐Bolyai University11 Arany Janos str.400028Cluj‐NapocaRomania
| |
Collapse
|
46
|
Huang J, Lin Z, Feng W, Wang W. Synthesis of Bithiophene-Based D-A₁-D-A₂ Terpolymers with Different A₂ Moieties for Polymer Solar Cells via Direct Arylation. Polymers (Basel) 2019; 11:E55. [PMID: 30960039 PMCID: PMC6402016 DOI: 10.3390/polym11010055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 01/06/2023] Open
Abstract
A series of bithiophene (2T)-based D-A₁-D-A₂ terpolymers with different A₂ moieties were prepared via direct arylation reaction. In these terpolymers, pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) was selected as the first electron-accepting (A₁) moiety, 2,1,3-benzothiadiazole (BT) or fluorinated benzothiadiazole (FBT) or octyl-thieno[3,4-c]pyrrole-4,6-dione (TPD) or 2,1,3-benzoselendiazole (SeT) was selected as the second electron-accepting (A₂) moiety, while bithiophene with hexyl side chain was used as the electron-donating moiety. The UV-vis absorption, electrochemical properties, blend film morphology, and photovoltaic properties were studied to explore the effects of the A₂ moiety. It is shown that these terpolymer films exhibit broad absorption (350⁻1000 nm), full width at half-maximum of more than 265 nm and ordered molecular packing. Varying the A₂ moiety could affect the energy levels and blend film morphology leading to different polymer solar cell (PSC) performances of these (2T)-based D-A₁-D-A₂ terpolymers. As a result, the highest Jsc of 10.70 mA/cm² is achieved for Polymer 1 (P1) with BT as A₂ moiety, while the higher highest occupied molecular orbital (HOMO) level limits the open circuit voltage (Voc) and leads to a power conversion efficiency (PCE) of 3.46%.
Collapse
Affiliation(s)
- Jinfeng Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Zhenkun Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Wenhuai Feng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Wen Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
47
|
Liang S, Xu Y, Li C, Li J, Wang D, Li W. Realizing lamellar nanophase separation in a double-cable conjugated polymer via a solvent annealing process. Polym Chem 2019. [DOI: 10.1039/c9py00765b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A double-cable conjugated polymer based on crystalline polythiophene backbone and perylene bisimide side units was developed to realize ordered lamellar structures via solvent annealing process.
Collapse
Affiliation(s)
- Shijie Liang
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- P. R. China
| | - Yunhua Xu
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Junyu Li
- DSM DMSC R&D Solutions
- 6160 MD Geleen
- The Netherlands
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Weiwei Li
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| |
Collapse
|
48
|
|
49
|
Pawłowska S, Kowalewski TA, Pierini F. Fibrous polymer nanomaterials for biomedical applications and their transport by fluids: an overview. SOFT MATTER 2018; 14:8421-8444. [PMID: 30339174 DOI: 10.1039/c8sm01269e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the past few decades, there has been strong interest in the development of new micro- and nanomaterials for biomedical applications. Their use in the form of capsules, particles or filaments suspended in body fluids is associated with conformational changes and hydrodynamic interactions responsible for their transport. The dynamics of fibres or other long objects in Poiseuille flow is one of the fundamental problems in a variety of biomedical contexts, such as mobility of proteins, dynamics of DNA or other biological polymers, cell movement, tissue engineering, and drug delivery. In this review, we discuss several important applications of micro and nanoobjects in this field and try to understand the problems of their transport in flow resulting from material-environment interactions in typical, crowded, and complex biological fluids. Our aim is to elucidate the relationship between the nano- and microscopic structures of elongated polymer particles and their flow properties, thus opening the possibility to design nanoobjects that can be efficiently transported by body fluids for targeted drug release or local tissue regeneration.
Collapse
Affiliation(s)
- S Pawłowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
50
|
Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, De Sio L, Kowalewski TA. Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules 2018; 19:4147-4167. [DOI: 10.1021/acs.biomac.8b01138] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | - Massimiliano Lanzi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | |
Collapse
|