1
|
Schara P, Cristadoro A, Sijbesma RP, Tomović Ž. Sustainable and Scalable Synthesis of Acetal-Containing Polyols as a Platform for Circular Polyurethanes. CHEMSUSCHEM 2025; 18:e202401595. [PMID: 39141831 PMCID: PMC11739849 DOI: 10.1002/cssc.202401595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Polyurethanes (PUs) are highly versatile polymers widely utilized across industries. However, chemical recycling of PU poses significant challenges due to the harsh conditions required and the formation of complex mixtures of oligomers upon depolymerization. Addressing this inherent lack of recyclability, we developed closed-loop recyclable PU materials by integrating cleavable acetal groups. We present a sustainable and scalable synthesis method for acetal-containing polyols (APs) through aldehyde-diol polycondensation, utilizing reusable heterogeneous catalysts. Three APs with different hydrolytic stabilities depending on the structure of acetal groups were synthesized from formaldehyde, acetaldehyde, and propionaldehyde with 1,6-hexanediol (H16). These APs were employed alongside 4,4'-methylene diisocyanate (MDI) for preparation of PU materials. The resulting PUs exhibited mechanical properties comparable to or surpassing those of conventional PUs, while demonstrating excellent recyclability under acidic conditions. Notably, hydrolysis of PU materials based on acetaldehyde-derived APs yielded remarkable monomer recovery rates, with 89 % for H16 and 84 % for 4,4'-methylenedianiline, a precursor to MDI. Furthermore, we successfully demonstrated closed-loop recycling by synthesizing APs from recovered H16, resulting in PU materials with identical properties to the original PU. This achievement highlights the potential for establishing a closed-loop recycling system for acetal-containing PUs, contributing to the advancement of a sustainable and circular economy.
Collapse
Affiliation(s)
- Patrick Schara
- Department of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Anna Cristadoro
- BASF Polyurethanes GmbHElastogranstraße 6049448LemfördeGermany
| | - Rint P. Sijbesma
- Department of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology5600 MBEindhovenNetherlands
| | - Željko Tomović
- Department of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology5600 MBEindhovenNetherlands
| |
Collapse
|
2
|
Fang DX, Chen MJ, Zeng FR, Guo SQ, He L, Liu BW, Huang SC, Zhao HB, Wang YZ. Self-evolutionary recycling of flame-retardant polyurethane foam enabled by controllable catalytic cleavage. MATERIALS HORIZONS 2024; 11:3585-3594. [PMID: 38742392 DOI: 10.1039/d4mh00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.
Collapse
Affiliation(s)
- Dan-Xuan Fang
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Ming-Jun Chen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Fu-Rong Zeng
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Shuai-Qi Guo
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Lei He
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Bo-Wen Liu
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | - Hai-Bo Zhao
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
4
|
Morado EG, Paterson ML, Ivanoff DG, Wang HC, Johnson A, Daniels D, Rizvi A, Sottos NR, Zimmerman SC. End-of-life upcycling of polyurethanes using a room temperature, mechanism-based degradation. Nat Chem 2023; 15:569-577. [PMID: 36864144 DOI: 10.1038/s41557-023-01151-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
A major challenge in developing recyclable polymeric materials is the inherent conflict between the properties required during and after their life span. In particular, materials must be strong and durable when in use, but undergo complete and rapid degradation, ideally under mild conditions, as they approach the end of their life span. We report a mechanism for degrading polymers called cyclization-triggered chain cleavage (CATCH cleavage) that achieves this duality. CATCH cleavage features a simple glycerol-based acyclic acetal unit as a kinetic and thermodynamic trap for gated chain shattering. Thus, an organic acid induces transient chain breaks with oxocarbenium ion formation and subsequent intramolecular cyclization to fully depolymerize the polymer backbone at room temperature. With minimal chemical modification, the resulting degradation products from a polyurethane elastomer can be repurposed into strong adhesives and photochromic coatings, demonstrating the potential for upcycling. The CATCH cleavage strategy for low-energy input breakdown and subsequent upcycling may be generalizable to a broader range of synthetic polymers and their end-of-life waste streams.
Collapse
Affiliation(s)
- Ephraim G Morado
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mara L Paterson
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas G Ivanoff
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hsuan-Chin Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alayna Johnson
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Darius Daniels
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Aoon Rizvi
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nancy R Sottos
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA. .,Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
5
|
Recent Advances in Lignocellulose-Based Monomers and Their Polymerization. Polymers (Basel) 2023; 15:polym15040829. [PMID: 36850113 PMCID: PMC9964446 DOI: 10.3390/polym15040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Replacing fossil-based polymers with renewable bio-based polymers is one of the most promising ways to solve the environmental issues and climate change we human beings are facing. The production of new lignocellulose-based polymers involves five steps, including (1) fractionation of lignocellulose into cellulose, hemicellulose, and lignin; (2) depolymerization of the fractionated cellulose, hemicellulose, and lignin into carbohydrates and aromatic compounds; (3) catalytic or thermal conversion of the depolymerized carbohydrates and aromatic compounds to platform chemicals; (4) further conversion of the platform chemicals to the desired bio-based monomers; (5) polymerization of the above monomers to bio-based polymers by suitable polymerization methods. This review article will focus on the progress of bio-based monomers derived from lignocellulose, in particular the preparation of bio-based monomers from 5-hydroxymethylfurfural (5-HMF) and vanillin, and their polymerization methods. The latest research progress and application scenarios of related bio-based polymeric materials will be also discussed, as well as future trends in bio-based polymers.
Collapse
|
6
|
Sedrik R, Bonjour O, Laanesoo S, Liblikas I, Pehk T, Jannasch P, Vares L. Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules 2022; 23:2685-2696. [PMID: 35617050 PMCID: PMC9198987 DOI: 10.1021/acs.biomac.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Incorporating rigid
cyclic acetal and ketal units into polymer
structures is an important strategy toward recyclable high-performance
materials from renewable resources. In the present work, citric acid,
a widely used platform chemical derived from biomass, has been efficiently
converted into di- and tricyclic diketones. Ketalization with glycerol
or trimethylolpropane afforded rigid spirodiols, which were obtained
as complex mixtures of isomers. After a comprehensive NMR analysis,
the spirodiols were converted into the respective di(meth)acrylates
and utilized in thiol–ene polymerizations in combination with
different dithiols. The resulting poly(β-thioether ester ketal)s
were thermally stable up to 300 °C and showed glass-transition
temperatures in a range of −7 to 40 °C, depending on monomer
composition. The polymers were stable in aqueous acids and bases,
but in a mixture of 1 M aqueous HCl and acetone, the ketal functional
groups were cleanly hydrolyzed, opening the pathway for potential
chemical recycling of these materials. We envision that these novel
bioderived spirodiols have a great potential to become valuable and
versatile bio-based building blocks for several different kinds of
polymer materials.
Collapse
Affiliation(s)
- Rauno Sedrik
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Olivier Bonjour
- Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Siim Laanesoo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ilme Liblikas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Tõnis Pehk
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Patric Jannasch
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.,Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Lauri Vares
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
7
|
Alameda BM, Murphy JS, Barea-López BL, Knox KD, Sisemore JD, Patton DL. Hydrolyzable Poly(β-Thioether Ester Ketal) Thermosets via Acyclic Ketal Monomers. Macromol Rapid Commun 2022; 43:e2200028. [PMID: 35146833 DOI: 10.1002/marc.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Hydrolytically degradable poly(β-thioether ester ketal) thermosets are synthesized via radical-mediated thiol-ene photopolymerization using three novel dialkene acyclic ketal monomers and a mercaptopropionate based tetrafunctional thiol. For all thermoset compositions investigated, degradation behavior is highly tunable based on the structure of the incorporated ketal and pH. Complete degradation of the thermosets is observed upon exposure to acidic and neutral pH, and under high humidity conditions. Polymer networks comprised of crosslink junctions based on acyclic dimethyl ketals degrade the quickest, whereas networks containing acyclic cyclohexyl ketals undergo hydrolytic degradation on a longer timescale. Thermomechanical analysis revealed low glass transition temperatures and moduli typical of thioether-based thermosets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benjamin M Alameda
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - J Scott Murphy
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Bernardo L Barea-López
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Karly D Knox
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Jonathan D Sisemore
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
8
|
Ichake AB, Nagane SS, Jadhav UA, Torris A, Grau E, Cramail H, Wadgaonkar PP. Synthesis and Characterization of Partially Bio‐Based Aromatic (Co)polycarbonates Containing Biphenylene Units and Pendant Pentadecyl Chains. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amol B. Ichake
- Amol B. Ichake, Samadhan S. Nagane, Uday A. Jadhav, Prakash P. Wadgaonkar, Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune 411008 India
- Amol B. Ichake, Samadhan S. Nagane, Prakash P. Wadgaonkar, Academy of Scientific and Innovative Research (AcSIR) Delhi‐Mathura Road New Delhi 110025 India
| | - Samadhan S. Nagane
- Amol B. Ichake, Samadhan S. Nagane, Uday A. Jadhav, Prakash P. Wadgaonkar, Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune 411008 India
- Amol B. Ichake, Samadhan S. Nagane, Prakash P. Wadgaonkar, Academy of Scientific and Innovative Research (AcSIR) Delhi‐Mathura Road New Delhi 110025 India
| | - Uday A. Jadhav
- Amol B. Ichake, Samadhan S. Nagane, Uday A. Jadhav, Prakash P. Wadgaonkar, Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune 411008 India
| | - Arun Torris
- Amol B. Ichake, Samadhan S. Nagane, Uday A. Jadhav, Prakash P. Wadgaonkar, Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune 411008 India
| | - Etienne Grau
- Etienne Grau, Henri Cramail, Laboratoire de Chimie des Polymères Organiques UMR 5629 CNRS, Université de Bordeaux Bordeaux INP/ENSCBP 16 avenue Pey Berland Pessac 33600 France
| | - Henri Cramail
- Etienne Grau, Henri Cramail, Laboratoire de Chimie des Polymères Organiques UMR 5629 CNRS, Université de Bordeaux Bordeaux INP/ENSCBP 16 avenue Pey Berland Pessac 33600 France
| | - Prakash P. Wadgaonkar
- Amol B. Ichake, Samadhan S. Nagane, Uday A. Jadhav, Prakash P. Wadgaonkar, Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune 411008 India
- Amol B. Ichake, Samadhan S. Nagane, Prakash P. Wadgaonkar, Academy of Scientific and Innovative Research (AcSIR) Delhi‐Mathura Road New Delhi 110025 India
| |
Collapse
|
9
|
Synthesis of Mono Ethylene Glycol (MEG)-Based Polyurethane and Effect of Chain Extender on Its Associated Properties. Polymers (Basel) 2021; 13:polym13193436. [PMID: 34641251 PMCID: PMC8512123 DOI: 10.3390/polym13193436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
This study depicts the investigations of the effect of composition of aromatic polyester polyol produced from terephthalic acid (TPA) and different concentrations of mono ethylene glycol (mEG) as a chain extender on the mechanical properties of polyurethane (PU) elastomer. Aromatic polyester polyols are prepared via the poly-esterification of adipic acid, terephthalic acid, catalyst, and mono ethylene glycol; while a polyurethane elastomer is formulated via the pre-polymerization of polyol with pure monomeric Methylene diphenyl diisocyanate (MDI.) Mechanical properties of polyurethane elastomers are examined, such as hardness via shore A hardness, apparent density via ASTM (American Society for Testing and Materials) D1622–08, and abrasion wear resistance via a Deutches Institut fur Normung (DIN) abrasion wear resistance tester. Structural properties are investigated through Fourier-transform infrared spectroscopy (FTIR) analysis. Results reveal that the shore A hardness of the PU elastomer increases with an increasing concentration of mEG from 4g to 12g. Nevertheless, the elastomer’s density depicts a reduction with an increasing extender content. The abrasion wear resistance of polyurethane, however, increases with an increasing concentration of glycol. A structural analysis through FTIR confirms the formation of polyurethane elastomer through the characteristic peaks demonstrated.
Collapse
|
10
|
Xuan W, Odelius K, Hakkarainen M. Tunable polylactide plasticizer design: Rigid stereoisomers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Shen A, Wang J, Ma S, Fei X, Zhang X, Zhu J, Liu X. Completely amorphous high thermal resistant copolyesters from bio‐based 2,
5‐furandicarboxylic
acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ang Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| | - Shugang Ma
- PetroChina Petrochemical Research Institute Beijing China
| | - Xuan Fei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Hayashi S, Tachibana Y, Tabata N, Kasuya KI. Chemically recyclable bio-based polyester composed of bifuran and glycerol acetal. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Andrade-Gagnon B, Bélanger-Bouliga M, Trang Nguyen P, Nguyen THD, Bourgault S, Nazemi A. Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E161. [PMID: 33435172 PMCID: PMC7826923 DOI: 10.3390/nano11010161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Polymeric nanomaterials that degrade in acidic environments have gained considerable attention in nanomedicine for intracellular drug delivery and cancer therapy. Among various acid-degradable linkages, spirocyclic acetals have rarely been used to fabricate such vehicles. In addition to acid sensitivity, they benefit from conformational rigidity that is otherwise not attainable by their non-spirocyclic analogs. Herein, amphiphilic spirocyclic polyacetals are synthesized by Cu-catalyzed alkyne-azide "click" polymerization. Unlike conventional block copolymers, which often form core-shell structures, these polymers self-assemble to form core amphiphilic assemblies capable of encapsulating Nile red as a hydrophobic model drug. In vitro experiments show that while release from these materials can occur at neutral pH with preservation of their integrity, acidic pH accelerates efficient cargo release and leads to the complete degradation of assemblies. Moreover, cellular assays reveal that these materials are fully cytocompatible, interact with the plasma membrane, and can be internalized by cells, rendering them as potential candidates for cancer therapy and/or drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada; (B.A.-G.); (M.B.-B.); (P.T.N.); (T.H.D.N.); (S.B.)
| |
Collapse
|
14
|
Warlin N, Nilsson E, Guo Z, Mankar SV, Valsange NG, Rehnberg N, Lundmark S, Jannasch P, Zhang B. Synthesis and melt-spinning of partly bio-based thermoplastic poly(cycloacetal-urethane)s toward sustainable textiles. Polym Chem 2021. [DOI: 10.1039/d1py00450f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Partly bio-based thermoplastic poly(cycloacetal-urethane)s synthesized and melt-spun into textile fibres that can be potentially chemically recycled.
Collapse
Affiliation(s)
- Niklas Warlin
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Erik Nilsson
- Plasman, Molndalsvagen 36, 412 63 Gothenburg, Sweden
- Department of Chemistry, Biomaterials and Textile, RISE - Research Institutes of Sweden, Mölndal, SE-43153, Sweden
| | - Zengwei Guo
- Department of Chemistry, Biomaterials and Textile, RISE - Research Institutes of Sweden, Mölndal, SE-43153, Sweden
| | - Smita V. Mankar
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Nitin G. Valsange
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Nicola Rehnberg
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
- Strategic R&D, Bona AB, Box 210 74, 200 21 Malmö, Sweden
| | - Stefan Lundmark
- Perstorp AB, Innovation, Perstorp Industrial Park, 284 80 Perstorp, Sweden
| | - Patric Jannasch
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
15
|
Kuhire SS, Talanikar AA, Tawade BV, Nagane SS, Wadgaonkar PP. Partially bio‐based furyl‐functionalized organosoluble poly(ether ether ketone)s. POLYM INT 2020. [DOI: 10.1002/pi.6160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sachin S. Kuhire
- Polymers and Advanced Materials Laboratory, Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research New Delhi India
| | - Aniket A. Talanikar
- Polymers and Advanced Materials Laboratory, Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory Pune India
| | - Bhausaheb V. Tawade
- Polymers and Advanced Materials Laboratory, Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory Pune India
| | - Samadhan S. Nagane
- Polymers and Advanced Materials Laboratory, Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research New Delhi India
| | - Prakash P. Wadgaonkar
- Polymers and Advanced Materials Laboratory, Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research New Delhi India
| |
Collapse
|
16
|
Shahni RK, Mabin M, Wang Z, Shaik M, Ugrinov A, Chu QR. Synthesis and characterization of BPA-free polyesters by incorporating a semi-rigid cyclobutanediol monomer. Polym Chem 2020. [DOI: 10.1039/d0py01098g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trans-1,3-cyclobutane-containing diol (CBDO-1) has been synthesized and introduced to materials science as a versatile monomer and a possible phenol-free BPA replacement.
Collapse
Affiliation(s)
- Rahul K. Shahni
- Department of Chemistry
- University of North Dakota
- Grand Forks
- USA
| | - Micah Mabin
- Department of Chemistry
- University of North Dakota
- Grand Forks
- USA
| | - Zhihan Wang
- Department of Physical Sciences
- Eastern New Mexico University
- Portales
- USA
| | - Muneer Shaik
- Department of Chemistry
- University of North Dakota
- Grand Forks
- USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Qianli R. Chu
- Department of Chemistry
- University of North Dakota
- Grand Forks
- USA
| |
Collapse
|
17
|
Arza C, Zhang B. Synthesis, Thermal Properties, and Rheological Characteristics of Indole-Based Aromatic Polyesters. ACS OMEGA 2019; 4:15012-15021. [PMID: 31552343 PMCID: PMC6751728 DOI: 10.1021/acsomega.9b01802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Currently, there is an intensive development of bio-based aromatic building blocks to replace fossil-based terephthalates used for poly(ethylene terephthalate) production. Indole is a ubiquitous aromatic unit in nature, which has great potential as a bio-based feedstock for polymers or plastics. In this study, we describe the synthesis and characterization of new indole-based dicarboxylate monomers with only aromatic ester bonds, which can improve the thermal stability and glass-transition temperature (T g) of the resulting polyesters. The new dicarboxylate monomers were polymerized with five aliphatic diols to yield 10 new polyesters with tunable chemical structures and physical properties. Particularly, the T g values of the obtained polyesters can be as high as 113 °C, as indicated by differential scanning calorimetry and dynamic mechanical analysis. The polyesters showed decent thermal stability and distinct flow transitions as revealed by thermogravimetric analysis and rheology measurements.
Collapse
|
18
|
Synthesis and Properties of Poly(butylene carbonate-co-spirocyclic carbonate). Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Bernhard Y, Pellegrini S, Bousquet T, Favrelle A, Pelinski L, Cazaux F, Gaucher V, Gerbaux P, Zinck P. Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit. CHEMSUSCHEM 2019; 12:3370-3376. [PMID: 31013551 DOI: 10.1002/cssc.201900745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Environmental regulation and depletion of fossil resources are boosting the search for new polymeric materials produced from biomass. Here, the synthesis of a new diester bearing a pendant lactam unit from methyl levulinate and aspartic acid is reported. The palladium-catalyzed reductive amination/cyclization sequence was carefully optimized to afford the diacid with high yield (>95 %). In a second step, the compound was esterified to give the corresponding diester. The latter monomer was copolymerized with α-ω linear diols, yielding polyesters with molecular weights up to 20.5 kg mol-1 .
Collapse
Affiliation(s)
- Yann Bernhard
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Sylvain Pellegrini
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Till Bousquet
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Audrey Favrelle
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Lydie Pelinski
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Frédéric Cazaux
- Université de Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, 59000, Lille, France
| | - Valérie Gaucher
- Université de Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, 59000, Lille, France
| | - Pascal Gerbaux
- University of Mons-UMONS, Organic Synthesis & Mass Spectrometry Laboratory, 23 Place du Parc, 7000, Mons, Belgium
| | - Philippe Zinck
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| |
Collapse
|
20
|
Hatti-Kaul R, Nilsson LJ, Zhang B, Rehnberg N, Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol 2019; 38:50-67. [PMID: 31151764 DOI: 10.1016/j.tibtech.2019.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Several concurrent developments are shaping the future of plastics. A transition to a sustainable plastics system requires not only a shift to fossil-free feedstock and energy to produce the carbon-neutral building blocks for polymers used in plastics, but also a rational design of the polymers with both desired material properties for functionality and features facilitating their recyclability. Biotechnology has an important role in producing polymer building blocks from renewable feedstocks, and also shows potential for recycling of polymers. Here, we present strategies for improving the performance and recyclability of the polymers, for enhancing degradability to monomers, and for improving chemical recyclability by designing polymers with different chemical functionalities.
Collapse
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden.
| | - Lars J Nilsson
- Environmental and Energy Systems Studies, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Baozhong Zhang
- Center for Analysis and Synthesis, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Nicola Rehnberg
- Bona Sweden AB, Murmansgatan 130, Box 210 74, SE-200 21, Malmö, Sweden
| | | |
Collapse
|
21
|
Yu Y, Pang C, Jiang X, Yang Z, Ma J, Gao H. Copolycarbonates Based on a Bicyclic Diol Derived from Citric Acid and Flexible 1,4-Cyclohexanedimethanol: From Synthesis to Properties. ACS Macro Lett 2019; 8:454-459. [PMID: 35651131 DOI: 10.1021/acsmacrolett.9b00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Octahydro-2,5-pentalenediol (OPD), is a compelling citric acid-based bicyclic diol with excellent rigidity and thermal stability. Herein, a series of copolycarbonates (co-PCs) were synthesized, starting from OPD, 1,4-cyclohexanedimethanol (CHDM), and diphenyl carbonate (DPC). All polycarbonates are amorphous with glass transition temperatures increased when increasing the content in OPD units. Dynamic mechanical analysis (DMA) revealed the sub Tg β-relaxations at low temperatures originating from the CHDM conformational transition, indicative of the possibility of impact-resistance. Morphological analysis of the fracture surfaces revealed the toughening mechanism under tensile was shear yielding of the matrix triggered by internal cavitation. The incorporation of OPD steadily increased the Young's modulus, from 482 to 757 MPa, with the OPD fraction increased from 0 to 30 mol %. As the OPD content further increased, a "ductile-to-brittle" transition occurred due to the low number-average molecular weight (Mn) and the low entangled strand density (high entanglement molecular weight).
Collapse
Affiliation(s)
- Yan Yu
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Chengcai Pang
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Xueshuang Jiang
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Zhiyi Yang
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Jianbiao Ma
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Hui Gao
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| |
Collapse
|
22
|
Alameda BM, Palmer TC, Sisemore JD, Pierini NG, Patton DL. Hydrolytically degradable poly(β-thioether ester ketal) thermosets via radical-mediated thiol–ene photopolymerization. Polym Chem 2019. [DOI: 10.1039/c9py01082c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(β-thioether ester ketal) networks are reported that undergo complete degradation with tuneable degradation profiles under acid and/or basic conditions.
Collapse
Affiliation(s)
- Benjamin M. Alameda
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Travis C. Palmer
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Jonathan D. Sisemore
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Nicholas G. Pierini
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Derek L. Patton
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| |
Collapse
|
23
|
Hufendiek A, Lingier S, Du Prez FE. Thermoplastic polyacetals: chemistry from the past for a sustainable future? Polym Chem 2019. [DOI: 10.1039/c8py01219a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review serves as a guide to the synthesis and applications of thermoplastic polyacetals, highlighting in particular sustainability and degradability aspects.
Collapse
Affiliation(s)
- Andrea Hufendiek
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Sophie Lingier
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| |
Collapse
|
24
|
Sun J, Birnbaum W, Anderski J, Picker MT, Mulac D, Langer K, Kuckling D. Use of Light-Degradable Aliphatic Polycarbonate Nanoparticles As Drug Carrier for Photosensitizer. Biomacromolecules 2018; 19:4677-4690. [DOI: 10.1021/acs.biomac.8b01446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jingjiang Sun
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Wolfgang Birnbaum
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Juliane Anderski
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Marie-Theres Picker
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|
25
|
Hufendiek A, Lingier S, Espeel P, De Wildeman S, Du Prez FE. Polycycloacetals via polytransacetalization of diglycerol bisacetonide. Polym Chem 2018. [DOI: 10.1039/c8py01191e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diglycerol bisacetonide sourced from renewable, abundant and inexpensive glycerol is introduced as a building block for polycycloacetal (co)polymers, which cover a range in thermal and mechanical properties and degradability profile.
Collapse
Affiliation(s)
- Andrea Hufendiek
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
| | - Sophie Lingier
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
| | - Pieter Espeel
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
| | - Stefaan De Wildeman
- Biobased Materials
- Faculty of Humanities and Sciences
- Maastricht University
- 6200 MD Geleen
- The Netherlands
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
| |
Collapse
|
26
|
Bai D, Chen Q, Chai Y, Ren T, Huang C, Ingram ID, North M, Zheng Q, Xie H. Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis. RSC Adv 2018; 8:34297-34303. [PMID: 35548608 PMCID: PMC9087012 DOI: 10.1039/c8ra07185c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Vanillin has been regarded as one of the important biomass-based platform chemicals for aromatic polymers synthesis. Herein, novel symmetric bis(4-formyl-2-methoxyphenyl)carbonate (BFMC) and bis(4-(hydroxymethyl)-2-methoxyphenyl)carbonate (BHMC) polymeric monomers have been synthesized in high yields using vanillin as a raw chemical, which have been submitted for polymer synthesis via well-established polymeric strategies. A new class of poly(carbonate ester)s oligomers with amide moieties in their side chain can be prepared by using the BFMC as one of monomers via the Passerini three compound reaction (3CR). A new class of poly(carbonate ester)s oligomers and poly(carbonate urethane)s can be prepared via reactions between BHMC with dicarboxylic acid chlorides and diisocyanates, respectively. Their structure have been confirmed by 1H NMR, 13C NMR and FTIR, and the gel permeation chromatograph (GPC) analysis shows that the Mn of poly(carbonate ester)s oligomers ranges from 3100 to 7900 with PDI between 1.31 and 1.65, and the Mn of poly(carbonate urethane)s ranges from 16 400 to 24 400 with PDI ranging from 1.36 to 2.17. The DSC analysis shows that the poly(carbonate ester)s oligomers have relative low Tg ranging from 37.4 to 74.1 °C, and the poly(carbonate urethane)s have Tg ranging from 97.3 to 138.3 °C, mainly correlating to the structure of dicarboxylic acid chlorides and diisocyanates used. Novel classes of lignin-derived poly(carbonate ester)s, poly(carbonate ester)s pending amide moiety oligomers, and poly(carbonate urethane)s have been designed and synthesized.![]()
Collapse
Affiliation(s)
- De Bai
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Qin Chen
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Yang Chai
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Tianhua Ren
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Caijuan Huang
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Ian D. V. Ingram
- Green Chemistry Centre of Excellence
- Department of Chemistry
- University of York
- York
- UK
| | - Michael North
- Green Chemistry Centre of Excellence
- Department of Chemistry
- University of York
- York
- UK
| | - Qiang Zheng
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Haibo Xie
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| |
Collapse
|